1 Introduction

This document describes a computer system that can be implemented on the Altera DE1 development and education board. This system, called the DE1 Media Computer, is intended to be used as a platform for experiments in computer organization and embedded systems. To support these experiments, the system contains a number of components: a processor, memory, audio and video devices, and some simple I/O peripherals. The FPGA programming file that implements this system, as well as its design source files, can be obtained from the University Program section of Altera’s web site.

2 DE1 Media Computer Contents

A block diagram of the DE1 Media Computer is shown in Figure 1. Its main components include the Altera Nios II processor, memory for program and data storage, an audio-in/out port, a video-out port with both pixel and character buffers, a PS/2 serial port, parallel ports connected to switches and lights, a timer module, and an RS 232 serial port. As shown in the figure, the processor and its interfaces to I/O devices are implemented inside the Cyclone® II FPGA chip on the DE1 board. A number of the components shown in Figure 1 are described in the remainder of this section, and the others are presented in section 4.

2.1 Nios II Processor

The Altera Nios® II processor is a 32-bit CPU that can be instantiated in an Altera FPGA chip. Three versions of the Nios II processor are available, designated economy (/e), standard (/s), and fast (/f). The DE1 Media Computer includes the Nios II/s version, which has an appropriate feature set for use in introductory experiments.

An overview of the Nios II processor can be found in the document Introduction to the Altera Nios II Processor, which is provided in the University Program’s web site. An easy way to begin working with the DE1 Media Computer and the Nios II processor is to make use of a utility called the Altera Monitor Program. This utility provides an easy way to assemble and compile Nios II programs that are written in either assembly language or the C programming language. The Monitor Program, which can be downloaded from Altera’s web site, is an application program that runs on the host computer connected to the DE1 board. The Monitor Program can be used to control the execution of code on Nios II, list (and edit) the contents of processor registers, display/edit the contents of memory on the DE1 board, and similar operations. The Monitor Program includes the DE1 Media Computer as a predesigned system that can be downloaded onto the DE1 board, as well as several sample programs in assembly language and C that show how to use the DE1 Media Computer’s peripherals. Some images that show how the DE1 Media Computer is integrated with the Monitor Program are described in section 8. An overview of the Monitor Program is available in the document Altera Monitor Program Tutorial, which is provided in the University Program web site.
As indicated in Figure 1, the Nios II processor can be reset by pressing \texttt{KEY}_0 on the DE1 board. The reset mechanism is discussed further in section 3. All of the I/O peripherals in the DE1 Media Computer are accessible by the processor as memory mapped devices, using the address ranges that are given in the following subsections.

2.2 Memory Components

The DE1 Media Computer has three types of memory components: SDRAM, SRAM, and on-chip memory inside the FPGA chip. Each type of memory is described below.

2.2.1 SDRAM

An SDRAM Controller provides a 32-bit interface to the synchronous dynamic RAM (SDRAM) chip on the DE1 board, which is organized as 1M x 16 bits x 4 banks. It is accessible by the Nios II processor using word (32-bit), halfword (16-bit), or byte operations, and is mapped to the address space 0x00000000 to 0x007FFFFF.
2.2.2 SRAM

An SRAM Controller provides a 32-bit interface to the static RAM (SRAM) chip on the DE1 board. This SRAM chip is organized as 256K x 16 bits, but is accessible by the Nios II processor using word (32-bit), halfword (16-bit), or byte operations. The SRAM memory is mapped to the address space 0x08000000 to 0x0807FFFFFF.

2.2.3 On-Chip Memory

The DE1 Media Computer includes a 8-Kbyte memory that is implemented in the Cyclone II FPGA chip. This memory is organized as 8K x 8 bits, and spans addresses in the range 0x09000000 to 0x09001FFF. This memory is used as a character buffer for the video-out port, which is described in section 4.2.

2.3 Parallel Ports

The DE1 Media Computer includes several parallel ports that support input, output, and bidirectional transfers of data between the Nios II processor and I/O peripherals. As illustrated in Figure 2, each parallel port is assigned a Base address and contains up to four 32-bit registers. Ports that have output capability include a writable Data register, and ports with input capability have a readable Data register. Bidirectional parallel ports also include a Direction register that has the same bit-width as the Data register. Each bit in the Data register can be configured as an input by setting the corresponding bit in the Direction register to 0, or as an output by setting this bit position to 1. The Direction register is assigned the address Base + 4.

<table>
<thead>
<tr>
<th>Address</th>
<th>31</th>
<th>30</th>
<th>...</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data register</td>
</tr>
<tr>
<td>Base + 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direction register</td>
</tr>
<tr>
<td>Base + 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mask bits</td>
</tr>
<tr>
<td>Base + C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edge capture register</td>
</tr>
</tbody>
</table>

Figure 2. Parallel port registers in the DE1 Media Computer.

Some of the parallel ports in the DE1 Media Computer have registers at addresses Base + 8 and Base + C, as indicated in Figure 2. These registers are discussed in section 3.

2.3.1 Red and Green LED Parallel Ports

The red lights LEDR9−0 and green lights LEDG7−0 on the DE1 board are each driven by an output parallel port, as illustrated in Figure 3. The port connected to LEDR contains an 10-bit write-only Data register, which has the address 0x10000000. The port for LEDG has an eight-bit Data register that is mapped to address 0x10000010. These two registers can be written using word accesses, and the upper bits not used in the registers are ignored.
2.3.2 7-Segment Displays Parallel Port

There is one parallel port connected to the 7-segment displays on the DE1 board, which is comprised of a 32-bit write-only Data register. As indicated in Figure 4, the register at address 0x10000020 drives digits HEX3 to HEX0. Data can be written into these two registers by using word operations. This data directly controls the segments of each display, according to the bit locations given in Figure 4. The locations of segments 6 to 0 in each seven-segment display on the DE1 board is illustrated on the right side of the figure.

![Figure 4. Bit locations for the 7-segment displays parallel ports.](image)

2.3.3 Slider Switch Parallel Port

The SW9-0 slider switches on the DE1 board are connected to an input parallel port. As illustrated in Figure 5, this port comprises a 10-bit read-only Data register, which is mapped to address 0x10000040.

Pushbutton Parallel Port

The parallel port connected to the \(KEY_{3-1} \) pushbutton switches on the DE1 board comprises three 3-bit registers, as shown in Figure 6. These registers have the base addresses \(0x10000050 \) to \(0x1000005C \) and can be accessed using word operations. The read-only Data register provides the values of the switches \(KEY_3, KEY_2 \) and \(KEY_1 \). Bit 0 of the Data register is not used, because, as discussed in section 2.1, the corresponding switch \(KEY_0 \) is reserved for use as a reset mechanism for the DE1 Media Computer. The other two registers shown in Figure 6, at addresses \(0x10000058 \) and \(0x1000005C \), are discussed in section 3.

![Figure 5. Data register in the slider switch parallel port.](image)

Expansion Parallel Ports

The DE1 Media Computer includes two bidirectional parallel ports that are connected to the \(JP1 \) and \(JP2 \) expansion headers on the DE1 board. Each of these parallel ports includes the four 32-bit registers that were described previously for Figure 2. The base addresses of the ports connected to \(JP1 \) and \(JP2 \) are \(0x10000060 \) and \(0x10000070 \), respectively. Figure 7 gives a diagram of the \(JP1 \) and \(JP2 \) expansion connectors on the DE1 board, and shows how the respective parallel port Data register bits, \(D_{31-0} \), are assigned to the pins on the connector. The figure shows that bit \(D_0 \) of the parallel port for \(JP1 \) is assigned to the pin at the top left corner of the connector, bit \(D_1 \) is assigned to the right of this, and so on. Note that some of the pins on \(JP1 \) and \(JP2 \) are not usable as input/output connections, and are therefore not used by the parallel ports. Also, only 32 of the 36 data pins that appear on each connector can

![Figure 6. Registers used in the pushbutton parallel port.](image)

Table 1: Parallel Port Registers

<table>
<thead>
<tr>
<th>Address</th>
<th>Bits</th>
<th>31</th>
<th>30</th>
<th>\ldots</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10000050</td>
<td>Unused</td>
<td>KEY_3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unused</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x10000058</td>
<td>Unused</td>
<td>Mask bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1000005C</td>
<td>Unused</td>
<td>Edge bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Bits</th>
<th>31</th>
<th>30</th>
<th>\ldots</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10000050</td>
<td>Unused</td>
<td>KEY_3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unused</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x10000058</td>
<td>Unused</td>
<td>Mask bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1000005C</td>
<td>Unused</td>
<td>Edge bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
be used.

<table>
<thead>
<tr>
<th>JP1</th>
<th>JP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>D1</td>
</tr>
<tr>
<td>D2</td>
<td>D3</td>
</tr>
<tr>
<td>D4</td>
<td>D5</td>
</tr>
<tr>
<td>D6</td>
<td>D7</td>
</tr>
<tr>
<td>D8</td>
<td>D9</td>
</tr>
<tr>
<td>D10</td>
<td>D11</td>
</tr>
<tr>
<td>D12</td>
<td>D13</td>
</tr>
<tr>
<td>D14</td>
<td>D15</td>
</tr>
<tr>
<td>D16</td>
<td>D17</td>
</tr>
<tr>
<td>D18</td>
<td>D19</td>
</tr>
<tr>
<td>D20</td>
<td>D21</td>
</tr>
<tr>
<td>D22</td>
<td>D23</td>
</tr>
</tbody>
</table>

Figure 7. Assignment of parallel port bits to pins on JP1 and JP2.

2.3.6 Using the Parallel Ports with Assembly Language Code and C Code

The DE1 Media Computer provides a convenient platform for experimenting with Nios II assembly language code, or C code. A simple example of such code is provided in Figures 8 and 9. Both programs perform the same operations, and illustrate the use of parallel ports by using either assembly language or C code.

The code in the figures displays the values of the SW switches on the red LEDs, and the pushbutton keys on the green LEDs. It also displays a rotating pattern on 7-segment displays HEX3 ... HEX0. This pattern is shifted to the right by using a Nios II rotate instruction, and a delay loop is used to make the shifting slow enough to observe. The pattern on the HEX displays can be changed to the values of the SW switches by pressing any of pushbuttons KEY3, KEY2, or KEY1 (recall from section 2.1 that KEY0 causes a reset of the Nios II processor). When a pushbutton key is pressed, the program waits in a loop until the key is released.

The source code files shown in Figures 8 and 9 are distributed as part of the Altera Monitor Program. The files can be found under the heading sample programs, and are identified by the name Getting Started.
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

For Quartus II

```plaintext
/* This program demonstrates the use of parallel ports in the DE1 Media Computer:
 * 1. displays the SW switch values on the red LEDR
 * 2. displays the KEY[3..1] pushbutton values on the green LEDG
 * 3. displays a rotating pattern on the HEX displays
 * 4. if KEY[3..1] is pressed, uses the SW switches as the pattern

.text
.globl _start
_start:

; initialize base addresses of parallel ports
movia r15, 0x10000040
movia r16, 0x10000000
movia r17, 0x10000050
movia r18, 0x10000010
movia r20, 0x10000020
ldwio r6, 0(r19)

; display SW switch values on the LEDR
DO_DISPLAY:
    ldwio r4, 0(r15)
    stwio r4, 0(r16)
    ldwio r5, 0(r17)
    stwio r5, 0(r18)
    beq r5, r0, NO_BUTTON
    mov r6, r4

; display pushbutton values on the LEDG
WAIT:
    ldwio r5, 0(r17)
    bne r5, r0, WAIT

; store SW switch values to HEX displays if pushbutton is pressed
NO_BUTTON:
    stwio r6, 0(r20)
    roli r6, r6, 1
    movia r7, 500000
    movia r7, r7, 1
    bne r7, r0, DELAY
    br DO_DISPLAY

; delay counter
DELAY:
    subi r7, r7, 1
    bne r7, r0, DELAY
    br DO_DISPLAY

.data
    HEX_bits:
        .word 0x0000000F

.end
```

Figure 8. An example of Nios II assembly language code that uses parallel ports.
M
E
D
I
A
C
O
M
P
U
T
E
R
S
Y
S
T
E
M
F
O
R
T
H
E
A
L
T
E
R
D
E
1
B
O
A
R
D
For Quartus II
9

Cities of the World:

1. Displays the SW switch values on the red LEDR
2. Displays the KEY[3..1] pushbutton values on the green LEDG
3. Displays a rotating pattern on the HEX displays
4. If KEY[3..1] is pressed, uses the SW switches as the pattern

Figure 9. An example of C code that uses parallel ports.
2.4 JTAG Port

The JTAG port implements a communication link between the DE1 board and its host computer. This link is automatically used by the Quartus II software to transfer FPGA programming files into the DE1 board, and by the Altera Monitor Program. The JTAG port also includes a UART, which can be used to transfer character data between the host computer and programs that are executing on the Nios II processor. If the Altera Monitor Program is used on the host computer, then this character data is sent and received through its Terminal Window. The Nios II programming interface of the JTAG UART consists of two 32-bit registers, as shown in Figure 10. The register mapped to address 0x10001000 is called the Data register and the register mapped to address 0x10001004 is called the Control register.

![Figure 10. JTAG UART registers.](image)

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO. The number of characters currently stored in this FIFO is indicated in the field RAVAIL, which are bits 31–16 of the Data register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO, then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading the character at the head of the FIFO, which is provided in bits 7–0, decrements the value of RAVAIL by one and returns this decremented value as part of the read operation. If no data is present in the receive FIFO, then RVALID will be set to 0 and the data in bits 7–0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer. Character data is loaded into this FIFO by performing a write to bits 7–0 of the Data register in Figure 10. Note that writing into this register has no effect on received data. The amount of space, WSPACE, currently available in the transmit FIFO is provided in bits 31–16 of the Control register. If the transmit FIFO is full, then any characters written to the Data register will be lost.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer. This bit can be used to check if a working connection to the host computer has been established. The AC bit can be cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in section 3.

2.4.1 Using the JTAG UART with Assembly Language Code and C Code

Figures 11 and 12 give simple examples of assembly language and C code, respectively, that use the JTAG UART. Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART, and echoes this data back to the UART for transmission. If the program is executed by using the Altera Monitor
Program, then any keyboard character that is typed into the Terminal Window of the Monitor Program will be echoed back, causing the character to appear in the Terminal Window.

The source code files shown in Figures 11 and 12 are made available as part of the Altera Monitor Program. The files can be found under the heading sample programs, and are identified by the name JTAG UART.

```assembly
/* This program demonstrates use of the JTAG UART port in the DE1 Media Computer
 * It performs the following:
 * 1. sends a text string to the JTAG UART
 * 2. reads character data from the JTAG UART
 * 3. echos the character data back to the JTAG UART

.text
.global _start
_start:
/* set up stack pointer */
movia sp, 0x007FFFFC /* stack starts from highest memory address in SDRAM */

movia r6, 0x10001000 /* JTAG UART base address */

/* print a text string */
movia r8, TEXT_STRING
LOOP:
    ldb r5, 0(r8)
    beq r5, zero, GET_JTAG /* string is null-terminated */
    call PUT_JTAG
    addi r8, r8, 1
    br LOOP

/* read and echo characters */
GET_JTAG:
    ldwio r4, 0(r6) /* read the JTAG UART Data register */
    andi r8, r4, 0x8000 /* check if there is new data */
    beq r8, r0, GET_JTAG /* if no data, wait */
    andi r5, r4, 0x00ff /* the data is in the least significant byte */
    call PUT_JTAG /* echo character */
    br GET_JTAG
.end
```

Figure 11. An example of assembly language code that uses the JTAG UART (Part a).
/* Subroutine to send a character to the JTAG UART
* r5 = character to send
* r6 = JTAG UART base address
***/

.global PUT_JTAG

PUT_JTAG:
 /* save any modified registers */
 subi sp, sp, 4 /* reserve space on the stack */
 stw r4, 0(sp) /* save register */

 ldwio r4, 4(r6) /* read the JTAG UART Control register */
 andhi r4, r4, 0xffff /* check for write space */
 beq r4, r0, END_PUT /* if no space, ignore the character */
 stwio r5, 0(r6) /* send the character */

END_PUT:
 /* restore registers */
 ldw r4, 0(sp)
 addi sp, sp, 4

 ret

.data /* data follows */

TEXT_STRING:
 .asciz "\nJTAG UART example code\n> "

.end

Figure 11. An example of assembly language code that uses the JTAG UART (Part b).
void put_jtag(volatile int *, char); // function prototype

/* This program demonstrates use of the JTAG UART port in the DE1 Media Computer */
/*
* It performs the following:
* 1. sends a text string to the JTAG UART
* 2. reads character data from the JTAG UART
* 3. echos the character data back to the JTAG UART
***/

int main(void)
{
 /* Declare volatile pointers to I/O registers (volatile means that IO load and store
 instructions (e.g., ldwio, stwio) will be used to access these pointer locations) */
 volatile int * JTAG_UART_ptr = (int*) 0x10001000; // JTAG UART address
 int data, i;
 char text_string[] = "nJTAG UART example code\n> \0";

 for (i = 0; text_string[i] != 0; ++i) // print a text string
 put_jtag (JTAG_UART_ptr, text_string[i]);

 /* read and echo characters */
 while(1)
 {
 data = *(JTAG_UART_ptr); // read the JTAG_UART Data register
 if (data & 0x00008000) // check RVALID to see if there is new data
 {
 data = data & 0x000000FF; // the data is in the least significant byte
 /* echo the character */
 put_jtag (JTAG_UART_ptr, (char) data & 0xFF);
 }
 }
}

/* Subroutine to send a character to the JTAG UART */
***/

void put_jtag(volatile int * JTAG_UART_ptr, char c)
{
 int control;
 control = *(JTAG_UART_ptr + 1); // read the JTAG_UART Control register
 if (control & 0xFFFF0000) // if space, then echo character, else ignore
 *(JTAG_UART_ptr) = c;
}

Figure 12. An example of C code that uses the JTAG UART.
2.5 Serial Port

The serial port in the DE1 Media Computer implements a UART that is connected to an RS232 chip on the DE1 board. This UART is configured for 8-bit data, one stop bit, odd parity, and operates at a baud rate of 115,200. The serial port’s programming interface consists of two 32-bit registers, as illustrated in Figure 13. The register at address 0x10001010 is referred to as the Data register, and the register at address 0x10001014 is called the Control register.

| Address | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----------|
| 0x10001010 | RAVAIL | Unused | PE | DATA |
| 0x10001014 | WSPACE | Unused | WI | RI | WE | RE |

Data register
Control register

Figure 13. Serial port UART registers.

When character data is received from the RS 232 chip it is stored in a 256-character FIFO in the UART. As illustrated in Figure 13, the number of characters RAVAIL currently stored in this FIFO is provided in bits 31–16 of the Data register. If the receive FIFO overflows, then additional data is lost. The character at the head of the FIFO can be accessed by reading bits 7–0 of the Data register. Bit 9 indicates whether or not the data has a parity error. Performing a halfword read operation on bits 31–16 of the Data register does not affect the value of RAVAIL, but if RAVAIL is greater than 1, then reading bits 15–0 decrements RAVAIL by one.

The UART also includes a 256-character FIFO that stores data waiting to be sent to the RS 232 chip. Character data is loaded into this register by performing a write to bits 7–0 of the Data register. Writing into this register has no effect on received data. The amount of space WSPACE currently available in the transmit FIFO is provided in bits 31–16 of the Control register, as indicated in Figure 13. If the transmit FIFO is full, then any additional characters written to the Data register will be lost.

The Control register bits RE, WE, RI, and WI are described in section 3.

2.6 Interval Timer

The DE1 Media Computer includes a timer that can be used to measure various time intervals. The interval timer is loaded with a preset value, and then counts down to zero using the 50-MHz clock signal provided on the DE1 board. The programming interface for the timer includes six 16-bit registers, as illustrated in Figure 14. The 16-bit register at address 0x10002000 provides status information about the timer, and the register at address 0x10002004 allows control settings to be made. The bit fields in these registers are described below:

- **TO** provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The TO bit can be reset by writing a 0 into it.
- **RUN** is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not affect the value of the RUN bit.
• *ITO* is used for generating Nios II interrupts, which are discussed in section 3.

• *CONT* affects the continuous operation of the timer. When the timer reaches a count value of zero it automatically reloads the specified starting count value. If *CONT* is set to 1, then the timer will continue counting down automatically. But if *CONT* = 0, then the timer will stop after it has reached a count value of 0.

• *(START/STOP)* can be used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0x10002008 and 0x1000200C allow the period of the timer to be changed by setting the starting count value. The default setting provided in the DE1 Media Computer gives a timer period of 125 msec. To achieve this period, the starting value of the count is 50 MHz × 125 msec = 6.25 × 10⁶. It is possible to capture a snapshot of the counter value at any time by performing a write to address 0x10002010. This write operation causes the current 32-bit counter value to be stored into the two 16-bit timer registers at addresses 0x10002010 and 0x10002014. These registers can then be read to obtain the count value.

2.7 System ID

The system ID module provides a unique value that identifies the DE1 Media Computer system. The host computer connected to the DE1 board can query the system ID module by performing a read operation through the JTAG port. The host computer can then check the value of the returned identifier to confirm that the DE1 Media Computer has been properly downloaded onto the DE1 board. This process allows debugging tools on the host computer, such as the Altera Monitor Program, to verify that the DE1 board contains the required computer system before attempting to execute code that has been compiled for this system.
3 Exceptions and Interrupts

The reset address of the Nios II processor in the DE1 Media Computer is set to 0x00000000. The address used for all other general exceptions, such as divide by zero, and hardware IRQ interrupts is 0x00000020. Since the Nios II processor uses the same address for general exceptions and hardware IRQ interrupts, the Exception Handler software must determine the source of the exception by examining the appropriate processor status register. Table 1 gives the assignment of IRQ numbers to each of the I/O peripherals in the DE1 Media Computer. The rest of this section describes the interrupt behavior associated with the interval timer, parallel ports, and serial ports in the DE1 Media Computer. Interrupts for other devices listed in Table 1 are discussed in section 4.

<table>
<thead>
<tr>
<th>I/O Peripheral</th>
<th>IRQ #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval timer</td>
<td>0</td>
</tr>
<tr>
<td>Pushbutton switch parallel port</td>
<td>1</td>
</tr>
<tr>
<td>Audio port</td>
<td>6</td>
</tr>
<tr>
<td>PS/2 port</td>
<td>7</td>
</tr>
<tr>
<td>JTAG port</td>
<td>8</td>
</tr>
<tr>
<td>Serial port</td>
<td>10</td>
</tr>
<tr>
<td>JP1 Expansion parallel port</td>
<td>11</td>
</tr>
<tr>
<td>JP2 Expansion parallel port</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1. Hardware IRQ interrupt assignment for the DE1 Media Computer.

3.1 Interrupts from Parallel Ports

Parallel port registers in the DE1 Media Computer were illustrated in Figure 2, which is reproduced as Figure 15. As the figure shows, parallel ports that support interrupts include two related registers at the addresses Base + 8 and Base + C. The Interruptmask register, which has the address Base + 8, specifies whether or not an interrupt signal should be sent to the Nios II processor when the data present at an input port changes value. Setting a bit location in this register to 1 allows interrupts to be generated, while setting the bit to 0 prevents interrupts. Finally, the parallel port may contain an Edgecapture register at address Base + C. Each bit in this register has the value 1 if the corresponding bit location in the parallel port has changed its value from 0 to 1 since it was last read. Performing a write operation to the Edgecapture register sets all bits in the register to 0, and clears any associated Nios II interrupts.

<table>
<thead>
<tr>
<th>Address</th>
<th>31</th>
<th>30</th>
<th>...</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data register</td>
<td>Input or output data bits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direction register</td>
<td>Direction bits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interruptmask register</td>
<td>Mask bits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edgecapture register</td>
<td>Edge bits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15. Registers used for interrupts from the parallel ports.
3.1.1 Interrupts from the Pushbutton Switches

Figure 6, reproduced as Figure 16, shows the registers associated with the pushbutton parallel port. The Interrupt-mask register allows processor interrupts to be generated when a key is pressed. Each bit in the Edgecapture register is set to 1 by the parallel port when the corresponding key is pressed. The Nios II processor can read this register to determine which key has been pressed, in addition to receiving an interrupt request if the corresponding bit in the interrupt mask register is set to 1. Writing any value to the Edgecapture register deasserts the Nios II interrupt request and sets all bits of the Edgecapture register to zero.

![Figure 16. Registers used for interrupts from the pushbutton parallel port.](image)

3.2 Interrupts from the JTAG UART

Figure 10, reproduced as Figure 17, shows the data and Control registers of the JTAG UART. As we said in section 2.4, RAVAIL in the Data register gives the number of characters that are stored in the receive FIFO, and WSPACE gives the amount of unused space that is available in the transmit FIFO. The RE and WE bits in Figure 17 are used to enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 7. Pending interrupts are indicated in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the JTAG UART.

![Figure 17. Interrupt bits in the JTAG UART registers.](image)

3.3 Interrupts from the serial port UART

We introduced the data and Control registers associated with the serial port UART in Figure 13, in section 2.5. The RE and WE bits in the Control register in Figure 13 are used to enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 31. Pending interrupts are indicated in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the UART.
3.4 Interrupts from the Interval Timer

Figure 14, in section 2.6, shows six registers that are associated with the interval timer. As we said in section 2.6, the bit b_0 (TO) is set to 1 when the timer reaches a count value of 0. It is possible to generate an interrupt when this occurs, by using the bit b_{16} (ITO). Setting the bit ITO to 1 allows an interrupt request to be generated whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing any value to the register that contains the bit TO.

3.5 Using Interrupts with Assembly Language Code

An example of assembly language code for the DE1 Media Computer that uses interrupts is shown in Figure 18. When this code is executed on the DE1 board it displays a rotating pattern on the HEX 7-segment displays. The pattern rotates to the right if pushbutton KEY1 is pressed, and to the left if KEY2 is pressed. Pressing KEY3 causes the pattern to be set using the SW switch values. Two types of interrupts are used in the code. The HEX displays are controlled by an interrupt service routine for the interval timer, and another interrupt service routine is used to handle the pushbutton keys. The speed at which the HEX displays are rotated is set in the main program, by using a counter value in the interval timer that causes an interrupt to occur every 33 msec.

```
.equ KEY1, 0
.equ KEY2, 1

/********************************************************************************
* This program demonstrates use of interrupts in the DE1 Media Computer. It first starts the
* interval timer with 33 msec timeouts, and then enables interrupts from the interval timer
* and pushbutton KEYs
*
* The interrupt service routine for the interval timer displays a pattern on the HEX displays, and
* shifts this pattern either left or right. The shifting direction is set in the pushbutton
* interrupt service routine, as follows:
* KEY[1]: shifts the displayed pattern to the right
* KEY[2]: shifts the displayed pattern to the left
* KEY[3]: changes the pattern using the settings on the SW switches
*******************************************************************************/

text  */ executable code follows */
.global _start

_start:
/* set up stack pointer */
movia sp, 0x007FFFFC    /* stack starts from highest memory address in SDRAM */

movia r16, 0x01000000    /* internal timer base address */
/* set the interval timer period for scrolling the HEX displays */
movia r12, 0x190000     /* 1/(50 MHz) × (0x190000) = 33 msec */
sthio r12, 8(r16)      /* store the low halfword of counter start value */
srli r12, r12, 16
sthio r12, 0x0C(r16)    /* high halfword of counter start value */

Figure 18. An example of assembly language code that uses interrupts (Part a).
```
/* start interval timer, enable its interrupts */
movi r15, 0b0111 /* START = 1, CONT = 1, ITO = 1 */
sthio r15, 4(r16)

/* write to the pushbutton port interrupt mask register */
movia r15, 0x10000050 /* pushbutton key base address */
movi r7, 0b011110 /* set 3 interrupt mask bits (bit 0 is Nios II reset) */
stwio r7, 8(r15) /* interrupt mask register is (base + 8) */

/* enable Nios II processor interrupts */
movi r7, 0b011 /* set interrupt mask bits for levels 0 (interval */
wrctl ienable, r7 /* timer) and level 1 (pushbuttons) */
movi r7, 1
wrctl status, r7 /* turn on Nios II interrupt processing */

IDLE:
 br IDLE /* main program simply idles */

.data
/* The two global variables used by the interrupt service routines for the interval timer and the
* pushbutton keys are declared below */

 .global PATTERN
 PATTERN:
 .word 0x0000000F /* pattern to show on the HEX displays */

 .global KEY_PRESSED
 KEY_PRESSED:
 .word KEY2 /* stores code representing pushbutton key pressed */

.end

Figure 18. An example of assembly language code that uses interrupts (Part b).

The reset and exception handlers for the main program in Figure 18 are given in Figure 19. The reset handler simply jumps to the _start symbol in the main program. The exception handler first checks if the exception that has occurred is an external interrupt or an internal one. In the case of an internal exception, such as an illegal instruction opcode or a trap instruction, the handler simply exits, because it does not handle these cases. For external exceptions, it calls either the interval timer interrupt service routine, for a level 0 interrupt, or the pushbutton key interrupt service routine for level 1. These routines are shown in Figures 20 and 21, respectively.
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

For Quartus II®

/* RESET SECTION
* The Monitor Program automatically places the "reset" section at the reset location
* specified in the CPU settings in SOPC Builder.
* Note: "ax" is REQUIRED to designate the section as allocatable and executable.
*/

.section .reset, "ax"
movia r2, _start
jmp r2 /* branch to main program */

/* EXCEPTIONS SECTION
* The Monitor Program automatically places the "exceptions" section at the
* exception location specified in the CPU settings in SOPC Builder.
* Note: "ax" is REQUIRED to designate the section as allocatable and executable.
*/

.section .exceptions, "ax"
.global EXCEPTION_HANDLER
EXCEPTION_HANDLER:
subi sp, sp, 16 /* make room on the stack */
stw et, 0(sp)

rdctl et, ctl4
beq et, r0, SKIP_EA_DEC /* interrupt is not external */

subi ea, ea, 4 /* must decrement ea by one instruction */
for external interrupts, so that the */
*interrupted instruction will be run after eret */

SKIP_EA_DEC:

stw ea, 4(sp) /* save all used registers on the Stack */
stw ra, 8(sp) /* needed if call inst is used */
stw r22, 12(sp)

rdctl et, ctl4
bne et, r0, CHECK_LEVEL_0 /* exception is an external interrupt */

NOT_EI: /* exception must be unimplemented instruction or TRAP */
br END_ISR /* instruction. This code does not handle those cases */

Figure 19. Reset and exception handler assembly language code (Part a).
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

CHECK_LEVEL_0: /* interval timer is interrupt level 0 */
 andi r22, et, 0b1
 beq r22, r0, CHECK_LEVEL_1
 call INTERVAL_TIMER_ISR
 br END_ISR

CHECK_LEVEL_1: /* pushbutton port is interrupt level 1 */
 andi r22, et, 0b10
 beq r22, r0, END_ISR /* other interrupt levels are not handled in this code */
 call PUSHBUTTON_ISR

END_ISR:
 ldw et, 0(sp) /* restore all used register to previous values */
 ldw ea, 4(sp)
 ldw ra, 8(sp) /* needed if call inst is used */
 addi sp, sp, 16
 eret
.end

Figure 19. Reset and exception handler assembly language code (Part b).

.include "key_codes.s" /* includes EQU for KEY1, KEY2 */
.extern PATTERN /* externally defined variables */
.extern KEY_PRESSED

/**
* Interval timer interrupt service routine
* Shifts a PATTERN being displayed on the HEX displays. The shift direction
* is determined by the external variable KEY_PRESSED.
***/
.global INTERVAL_TIMER_ISR
INTERVAL_TIMER_ISR:
 subi sp, sp, 36 /* reserve space on the stack */
 stw ra, 0(sp)
 stw r4, 4(sp)
 stw r5, 8(sp)
 stw r6, 12(sp)

Figure 20. Interrupt service routine for the interval timer (Part a).
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

stw r8, 16(sp)
stw r10, 20(sp)
stw r20, 24(sp)
stw r21, 28(sp)
stw r22, 32(sp)

movia r10, 0x10002000 /* interval timer base address */
sthio r0, 0(r10) /* clear the interrupt */

movia r20, 0x10000020 /* HEX3_HEX0 base address */
addi r5, r0, 1 /* set r5 to the constant value 1 */
movia r21, PATTERN /* set up a pointer to the pattern for HEX displays */
movia r22, KEY_PRESSED /* set up a pointer to the key pressed */

ldw r6, 0(r21) /* load pattern for HEX displays */

ldw r4, 0(r22) /* check which key has been pressed */
movi r8, KEY1 /* code to check for KEY1 */
beq r4, r8, LEFT /* for KEY1 pressed, shift right */
rol r6, r6, r5 /* else (for KEY2) pressed, shift left */
br END_INTERVAL_TIMER_ISR

LEFT:
ror r6, r6, r5 /* rotate the displayed pattern right */

END_INTERVAL_TIMER_ISR:

stw r6, 0(r21) /* store HEX display pattern */
ldw ra, 0(sp) /* Restore all used register to previous */
ldw r4, 4(sp)
ldw r5, 8(sp)
ldw r6, 12(sp)
ldw r8, 16(sp)
ldw r10, 20(sp)
ldw r20, 24(sp)
ldw r21, 28(sp)
ldw r22, 32(sp)
addi sp, sp, 36 /* release the reserved space on the stack */
ret

.end

Figure 20. Interrupt service routine for the interval timer (Part b).
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

.include "key_codes.s" /* includes EQU for KEY1, KEY2 */
.extern PATTERN /* externally defined variables */
.extern KEY_PRESSED

/**
 * Pushbutton - Interrupt Service Routine
 *
 * This routine checks which KEY has been pressed. If it is KEY1 or KEY2, it writes this value
 * to the global variable KEY_PRESSED. If it is KEY3 then it loads the SW switch values and
 * stores in the variable PATTERN
 **/

.global PUSHBUTTON_ISR

PUSHBUTTON_ISR:
 subi sp, sp, 20 /* reserve space on the stack */
 stw ra, 0(sp)
 stw r10, 4(sp)
 stw r11, 8(sp)
 stw r12, 12(sp)
 stw r13, 16(sp)

 movia r10, 0x10000050 /* base address of pushbutton KEY parallel port */
 ldwio r11, 0xC(r10) /* read edge capture register */
 stwio r0, 0xC(r10) /* clear the interrupt */

 movia r10, KEY_PRESSED /* global variable to return the result */

CHECK_KEY1:
 andi r13, r11, 0b0010 /* check KEY1 */
 beq r13, zero, CHECK_KEY2
 movi r12, KEY1
 stw r12, 0(r10) /* return KEY1 value */
 br END_PUSHBUTTON_ISR

CHECK_KEY2:
 andi r13, r11, 0b0100 /* check KEY2 */
 beq r13, zero, DO_KEY3
 movi r12, KEY2
 stw r12, 0(r10) /* return KEY2 value */
 br END_PUSHBUTTON_ISR

DO_KEY3:
 movia r13, 0x10000040 /* SW slider switch base address */
 ldwio r11, 0(r13) /* load slider switches */
 movia r13, PATTERN /* address of pattern for HEX displays */
 stw r11, 0(r13) /* save new pattern */

Figure 21. Interrupt service routine for the pushbutton keys (Part a).
3.6 Using Interrupts with C Language Code

An example of C language code for the DE1 Media Computer that uses interrupts is shown in Figure 22. This code performs exactly the same operations as the code described in Figure 18.

To enable interrupts the code in Figure 22 uses macros that provide access to the Nios II status and control registers. A collection of such macros, which can be used in any C program, are provided in Figure 23.

The reset and exception handlers for the main program in Figure 22 are given in Figure 24. The function called `the_reset` provides a simple reset mechanism by performing a branch to the main program. The function named `the_exception` represents a general exception handler that can be used with any C program. It includes assembly language code to check if the exception is caused by an external interrupt, and, if so, calls a C language routine named `interrupt_handler`. This routine can then perform whatever action is needed for the specific application. In Figure 24, the `interrupt_handler` code first determines which exception has occurred, by using a macro from Figure 23 that reads the content of the Nios II interrupt pending register. The interrupt service routine that is invoked for the interval timer is shown in 25, and the interrupt service routine for the pushbutton switches appears in Figure 26.

The source code files shown in Figure 18 to Figure 26 are distributed as part of the Altera Monitor Program. The files can be found under the heading sample programs, and are identified by the name Interrupt Example.
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

#include "nios2_ctrl_reg_macros.h"
#include "key_codes.h" // defines values for KEY1, KEY2

/* key_pressed and pattern are written by interrupt service routines; we have to declare
* these as volatile to avoid the compiler caching their values in registers */
volatile int key_pressed = KEY2; // shows which key was last pressed
volatile int pattern = 0x0000000F; // pattern for HEX displays

/* This program demonstrates use of interrupts in the DE1 Media Computer. It first starts the
* interval timer with 33 msec timeouts, and then enables interrupts from the interval timer
* and pushbutton KEYS
*
* The interrupt service routine for the interval timer displays a pattern on the HEX displays, and
* shifts this pattern either left or right. The shifting direction is set in the pushbutton
* interrupt service routine, as follows:
* KEY[1]: shifts the displayed pattern to the right
* KEY[2]: shifts the displayed pattern to the left
* KEY[3]: changes the pattern using the settings on the SW switches
*/

int main(void)
{
 // Declare volatile pointers to I/O registers (volatile means that IO load and store instructions
 // will be used to access these pointer locations instead of regular memory loads and stores)
 volatile int * interval_timer_ptr = (int *) 0x10002000; // interval timer base address
 volatile int * KEY_ptr = (int *) 0x10000050; // pushbutton KEY address

 /* set the interval timer period for scrolling the HEX displays */
 int counter = 0x190000; // 1/(50 MHz) × (0x190000) = 33 msec
 *(interval_timer_ptr + 0x2) = (counter & 0xFFFF);
 *(interval_timer_ptr + 0x3) = (counter >> 16) & 0xFFFF;

 /* start interval timer, enable its interrupts */
 *(interval_timer_ptr + 1) = 0x7; // STOP = 0, START = 1, CONT = 1, ITO = 1

 (KEY_ptr + 2) = 0xEE; / write to the pushbutton interrupt mask register, and
 * set 3 mask bits to 1 (bit 0 is Nios II reset) */

 NIOS2_WRITE_IENABLE(0x3); /* set interrupt mask bits for levels 0 (interval timer)
 * and level 1 (pushbuttons) */
 NIOS2_WRITE_STATUS(1); // enable Nios II interrupts

 while(1); // main program simply idles
}

Figure 22. An example of C code that uses interrupts.
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

Figure 23. Macros for accessing Nios II status and control registers.
#include "nios2_ctrl_reg_macros.h"

/* function prototypes */
void main(void);
void interrupt_handler(void);
void interval_timer_isr(void);
void pushbutton_ISR(void);

/* global variables */
extern int key_pressed;

/* The assembly language code below handles Nios II reset processing */
void the_reset (void) __attribute__((section (".reset")));
void the_reset (void)
/***/
/* Reset code; by using the section attribute with the name ".reset" we allow the linker program */
/* to locate this code at the proper reset vector address. This code just calls the main program */
**/
{
 asm (".set noat"); // magic, for the C compiler
 asm (".set nobreak"); // magic, for the C compiler
 asm ("movia r2, main"); // call the C language main program
 asm ("jmp r2");
}

/* The assembly language code below handles Nios II exception processing. This code should not be */
/* modified; instead, the C language code in the function interrupt_handler() can be modified as */
/* needed for a given application. */
void the_exception (void) __attribute__((section (".exceptions")));
void the_exception (void)
/***/
/* Exceptions code; by giving the code a section attribute with the name ".exceptions" we allow */
/* the linker to locate this code at the proper exceptions vector address. This code calls the */
/* interrupt handler and later returns from the exception. */
**/
{
 asm (".set noat"); // magic, for the C compiler
 asm (".set nobreak"); // magic, for the C compiler
 asm ("subi sp, sp, 128");
 asm ("stw et, 96(sp)");
 asm ("rdctl et, clt4");
 asm ("beq et, r0, SKIP_EA_DEC"); // interrupt is not external
 asm ("subi ea, ea, 4"); /* must decrement ea by one instruction for external */
 /* interrupts, so that the instruction will be run */

Figure 24. Reset and exception handler C code (Part a).
asm ("SKIP_EA_DEC:");
asm ("stw r1, 4(sp)"); // save all registers
asm ("stw r2, 8(sp)");
asm ("stw r3, 12(sp)");
asm ("stw r4, 16(sp)");
asm ("stw r5, 20(sp)");
asm ("stw r6, 24(sp)");
asm ("stw r7, 28(sp)");
asm ("stw r8, 32(sp)");
asm ("stw r9, 36(sp)");
asm ("stw r10, 40(sp)");
asm ("stw r11, 44(sp)");
asm ("stw r12, 48(sp)");
asm ("stw r13, 52(sp)");
asm ("stw r14, 56(sp)");
asm ("stw r15, 60(sp)");
asm ("stw r16, 64(sp)");
asm ("stw r17, 68(sp)");
asm ("stw r18, 72(sp)");
asm ("stw r19, 76(sp)");
asm ("stw r20, 80(sp)");
asm ("stw r21, 84(sp)");
asm ("stw r22, 88(sp)");
asm ("stw r23, 92(sp)");
asm ("stw r25, 100(sp)"); // r25 = bt (skip r24 = et, because it was saved above)
asm ("stw r26, 104(sp)"); // r26 = gp
// skip r27 because it is sp, and there is no point in saving this
asm ("stw r28, 112(sp)"); // r28 = fp
asm ("stw r29, 116(sp)"); // r29 = ea
asm ("stw r30, 120(sp)"); // r30 = ea
asm ("stw r31, 124(sp)"); // r31 = ra
asm ("addi fp, sp, 128");
asm ("call interrupt_handler"); // call the C language interrupt handler
asm ("ldw r1, 4(sp)"); // restore all registers
asm ("ldw r2, 8(sp)");
asm ("ldw r3, 12(sp)");
asm ("ldw r4, 16(sp)");
asm ("ldw r5, 20(sp)");
asm ("ldw r6, 24(sp)");
asm ("ldw r7, 28(sp)");

Figure 24. Reset and exception handler C language code (Part b).
asm ("ldw r8, 32(sp)");
asm ("ldw r9, 36(sp)");
asm ("ldw r10, 40(sp)");
asm ("ldw r11, 44(sp)");
asm ("ldw r12, 48(sp)");
asm ("ldw r13, 52(sp)");
asm ("ldw r14, 56(sp)");
asm ("ldw r15, 60(sp)");
asm ("ldw r16, 64(sp)");
asm ("ldw r17, 68(sp)");
asm ("ldw r18, 72(sp)");
asm ("ldw r19, 76(sp)");
asm ("ldw r20, 80(sp)");
asm ("ldw r21, 84(sp)");
asm ("ldw r22, 88(sp)");
asm ("ldw r23, 92(sp)");
asm ("ldw r24, 96(sp)");
asm ("ldw r25, 100(sp)"); // r25 = bt
asm ("ldw r26, 104(sp)"); // r26 = gp
// skip r27 because it is sp, and we did not save this on the stack
asm ("ldw r28, 112(sp)"); // r28 = fp
asm ("ldw r29, 116(sp)"); // r29 = ea
asm ("ldw r30, 120(sp)"); // r30 = ba
asm ("ldw r31, 124(sp)"); // r31 = ra

asm ("addi sp, sp, 128");
asm ("eret");

/**
* Interrupt Service Routine: Determines the interrupt source and calls the appropriate subroutine
 **/

void interrupt_handler(void)
{
 int ipending;
 NIOS2_READ_IPENDING(ipending);
 if (ipending & 0x1) // interval timer is interrupt level 0
 interval_timer_isr();
 if (ipending & 0x2) // pushbuttons are interrupt level 1
 pushbutton_ISR();
 // else, ignore the interrupt
 return;
}

Figure 24. Reset and exception handler C code (Part c).

#include "key_codes.h" // defines values for KEY1, KEY2

extern volatile int key_pressed;
extern volatile int pattern;

/* Interval timer interrupt service routine */
/* Shifts a pattern being displayed on the HEX displays. The shift direction is determined */
/* by the external variable key_pressed. */

**

void interval_timer_isr()
{
 volatile int * interval_timer_ptr = (int *) 0x10002000;
 volatile int * HEX3_HEX0_ptr = (int *) 0x10000020; // HEX3_HEX0 address

 *(interval_timer_ptr) = 0; // clear the interrupt
 *(HEX3_HEX0_ptr) = pattern; // display pattern on HEX3 ... HEX0

 /* rotate the pattern shown on the HEX displays */
 if (key_pressed == KEY2) // for KEY2 rotate left
 if (pattern & 0x80000000)
 pattern = (pattern << 1) | 1;
 else
 pattern = pattern << 1;
 else if (key_pressed == KEY1) // for KEY1 rotate right
 if (pattern & 0x00000001)
 pattern = (pattern >> 1) | 0x80000000;
 else
 pattern = (pattern >> 1) & 0x7FFFFFFF;

 return;
}

Figure 25. Interrupt service routine for the interval timer.
#include "key_codes.h" // defines values for KEY1, KEY2

extern volatile int key_pressed;
extern volatile int pattern;

/***
 * Pushbutton - Interrupt Service Routine
 *
 * This routine checks which KEY has been pressed. If it is KEY1 or KEY2, it writes this value
 * to the global variable key_pressed. If it is KEY3 then it loads the SW switch values and
 * stores in the variable pattern

void pushbutton_ISR(void)
{
 volatile int * KEY_ptr = (int *) 0x10000050;
 volatile int * slider_switch_ptr = (int *) 0x10000040;
 int press;

 press = *(KEY_ptr + 3); // read the pushbutton interrupt register
 *(KEY_ptr + 3) = 0; // clear the interrupt

 if (press & 0x2) // KEY1
 key_pressed = KEY1;
 else if (press & 0x4) // KEY2
 key_pressed = KEY2;
 else
 // press & 0x8, which is KEY3
 pattern = *(slider_switch_ptr); // read the SW slider switch values; store in pattern

 return;
}

Figure 26. Interrupt service routine for the pushbutton keys.
4 Media Components

This section describes the audio in/out port, video-out port, audio/video configuration module, 16 × 2 character display, and PS/2 port.

4.1 Audio In/Out Port

The DE1 Media Computer includes an audio port that is connected to the audio CODEC (COder/DECoder) chip on the DE1 board. The default setting for the sample rate provided by the audio CODEC is 48K samples/sec. The audio port provides audio-input capability via the microphone jack on the DE1 board, as well as audio output functionality via the line-out jack. The audio port includes four FIFOs that are used to hold incoming and outgoing data. Incoming data is stored in the left- and right-channel Read FIFOs, and outgoing data is held in the left- and right-channel Write FIFOs. All FIFOs have a maximum depth of 128 32-bit words.

The audio port’s programming interface consists of four 32-bit registers, as illustrated in Figure 27. The Control register, which has the address 0x10003040, is readable to provide status information and writable to make control settings. Bit RE of this register provides an interrupt enable capability for incoming data. Setting this bit to 1 allows the audio core to generate a Nios II interrupt when either of the Read FIFOs are filled 75% or more. The bit RI will then be set to 1 to indicate that the interrupt is pending. The interrupt can be cleared by removing data from the Read FIFOs until both are less than 75% full. Bit WE gives an interrupt enable capability for outgoing data. Setting this bit to 1 allows the audio core to generate an interrupt when either of the Write FIFOs are less than 25% full. The bit WI will be set to 1 to indicate that the interrupt is pending, and it can be cleared by filling the Write FIFOs until both are more than 25% full. The bits CR and CW in Figure 27 can be set to 1 to clear the Read and Write FIFOs, respectively. The clear function remains active until the corresponding bit is set back to 0.

<table>
<thead>
<tr>
<th>Address</th>
<th>31 . . . 24 23 . . . 16 15 . . . 10 9 8 7 . . . 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x10003040</td>
<td>Unused WI RI CW CR WE RE Control</td>
</tr>
<tr>
<td>0x10003044</td>
<td>WSLC WSRC RALC RARC</td>
</tr>
<tr>
<td>0x10003048</td>
<td>Left data</td>
</tr>
<tr>
<td>0x1000303C</td>
<td>Right data</td>
</tr>
</tbody>
</table>

Figure 27. Audio port registers.

The read-only Fifospace register in Figure 27 contains four 8-bit fields. The fields RARC and RALC give the number of words currently stored in the right and left audio-input FIFOs, respectively. The fields WSRC and WSLC give the number of words currently available (that is, unused) for storing data in the right and left audio-out FIFOs. When all FIFOs in the audio port are cleared, the values provided in the Fifospace register are RARC = RALC = 0 and WSRC = WSLC = 128.

The Leftdata and Rightdata registers are readable for audio in, and writable for audio out. When data is read from these registers, it is provided from the head of the Read FIFOs, and when data is written into these registers it is
loaded into the Write FIFOs.

A fragment of C code that uses the audio port is shown in Figure 28. The code checks to see when the depth of either the left or right Read FIFO has exceeded 75% full, and then moves the data from these FIFOs into a memory buffer. This code is part of a larger program that is distributed as part of the Altera Monitor Program. The source code can be found under the heading sample programs, and is identified by the name Media.

```c
volatile int * audio_ptr = (int *) 0x10003040;  // audio port address
int fifospace, int buffer_index = 0;
int left_buffer[BUF_SIZE];
int right_buffer[BUF_SIZE];
...
fifospace = *(audio_ptr + 1);  // read the audio port fifospace register
if ( (fifospace & 0x000000FF) > 96)  // check RARC, for > 75% full
{
    /* store data until the audio-in FIFO is empty or the memory buffer is full */
    while ( (fifospace & 0x000000FF) && (buffer_index < BUF_SIZE) )
    {
        left_buffer[buffer_index] = *(audio_ptr + 2);  //Leftdata
        right_buffer[buffer_index] = *(audio_ptr + 3);  //Rightdata
        ++buffer_index;
        fifospace = *(audio_ptr + 1);  // read the audio port fifospace register
    }
}
...
```

Figure 28. An example of code that uses the audio port.

4.2 Video-out Port

The DE1 Media Computer includes a video-out port with a VGA controller that can be connected to a standard VGA monitor. The VGA controller supports a screen resolution of 640 × 480. The image that is displayed by the VGA controller is derived from two sources: a pixel buffer, and a character buffer.

4.2.1 Pixel Buffer

The pixel buffer for the video-out port reads stored pixel values from a memory buffer for display by the VGA controller. As illustrated in Figure 29, the memory buffer provides an image resolution of 320 × 240 pixels, with the coordinate 0,0 being at the top-left corner of the image. Since the VGA controller supports the screen resolution of 640 × 480, each of the pixel values in the pixel buffer is replicated in both the x and y dimensions when it is being displayed on the VGA screen.

Figure 30a shows that each pixel value is represented as a 16-bit halfword, with five bits for the blue and red components, and six bits for green. As depicted in part b of Figure 30, pixels are addressed in the memory buffer by using the combination of a base address and an x,y offset. In the DE1 Media Computer the pixel buffer uses the base address (08000000)16, which corresponds to the starting address of the SRAM chip on the DE1 board. Using
this scheme, the pixel at location 0,0 has the address \((08000000)_{16}\), the pixel 1,0 has the address \(base + (00000000 00000001 0_{2}) = (08000002)_{16}\), the pixel 0,1 has the address \(base + (00000001 00000000 0_{2}) = (08000400)_{16}\), and the pixel at location 319,239 has the address \(base + (11101111 10011111 10_{2}) = (0803BE7E)_{16}\).

The pixel buffer includes a programming interface in the form of a set of registers. These registers allow the base address of the memory buffer used by the pixel buffer to be changed under software control, as well as providing status information. A detailed description of this programming interface is available in the online documentation for the Video-out port, which is available from Altera’s University Program web site.

![Pixel buffer coordinates](image)

Figure 29. Pixel buffer coordinates.

4.2.2 Character Buffer

The character buffer for the video-out port is stored in on-chip memory in the FPGA on the DE1 board. As illustrated in Figure 31a, the buffer provides a resolution of \(80 \times 60\) characters, where each character occupies an \(8 \times 8\) block of pixels on the VGA screen. Characters are stored in each of the locations shown in Figure 31a using their ASCII codes; when these character codes are displayed on the VGA monitor, the character buffer automatically generates
the corresponding pattern of pixels for each character using a built-in font. Part b of Figure 31 shows that characters are addressed in the memory by using the combination of a base address, which has the value \((09000000)_{16}\), and an \(x,y\) offset. Using this scheme, the character at location 0,0 has the address \((09000000)_{16}\), the character 1,0 has the address \(base + (000000 \ 000001)_{2} = (09000001)_{16}\), the character 0,1 has the address \(base + (000001 \ 000000)_{2} = (09000080)_{16}\), and the character at location 79,59 has the address \(base + (1110111 \ 1001111)_{2} = (09001DCF)_{16}\).

![Figure 31. Character buffer coordinates and addresses.](image)

4.2.3 Using the video-out port with C code

A fragment of C code that uses the pixel and character buffers is shown in Figure 32. The first while loop in the figure draws a rectangle in the pixel buffer using the color \(pixel_color\). The rectangle is drawn using the coordinates \(x_1, y_1\) and \(x_2, y_2\). The second while loop in the figure writes a null-terminated character string pointed to by the variable \(text_ptr\) into the character buffer at the coordinates \(x, y\). The code in Figure 32 is included in the sample program called \(Media\) that is distributed with the Altera Monitor Program.

4.3 Audio/Video Configuration Module

The audio/video configuration module controls settings that affect the operation of both the audio port and the video-out port. The audio/video configuration module automatically configures and initializes both of these ports whenever the DE1 Media Computer is reset. For typical use of the DE1 Media Computer it is not necessary to modify any of these default settings. In the case that changes to these settings are needed, the reader should refer to the audio/video configuration module’s online documentation, which is available from Altera’s University Program web site.
volatile short * pixel_buffer = (short *) 0x08000000; // Pixel buffer
volatile char * character_buffer = (char *) 0x09000000; // Character buffer
int x1, int y1, int x2, int y2, short pixel_color;
int offset, row, col;
int x, int y, char * text_ptr;
...
/* Draw a box; assume that the coordinates are valid */
for (row = y1; row <= y2; row++)
{
 col = x1;
 while (col <= x2)
 {
 offset = (row << 9) + col;
 *(pixel_buffer + offset) = pixel_color; // compute halfword address, set pixel
 ++col;
 }
}
/* Display a text string; assume that it fits on one line */
offset = (y << 7) + x;
while (*(text_ptr))
{
 *(character_buffer + offset) = *(text_ptr); // write to the character buffer
 ++text_ptr;
 ++offset;
}

Figure 32. An example of code that uses the video-out port.

4.4 PS/2 Port

The DE1 Media Computer includes a PS/2 port that can be connected to a standard PS/2 keyboard or mouse. The port includes a 256-byte FIFO that stores data received from a PS/2 device. The programming interface for the PS/2 port consists of two registers, as illustrated in Figure 33. The PS2_Data register is both readable and writable. Reading from this register provides the data at the head of the FIFO in the Data field, and the number of entries in the FIFO (including this read) in the RAVAIL field. When RAVAIL > 0, reading from the PS2_Data register decrements this field by 1. Writing to the PS2_Data register can be used to send a command in the Data field to the PS/2 device.

The PS2_Control register can be used to enable interrupts from the PS/2 port by setting the RE field to the value 1. When this field is set, then the PS/2 port generates an interrupt when RAVAIL > 0. While the interrupt is pending the field RI will be set to 1, and it can be cleared by emptying the PS/2 port FIFO. The CE field in the PS2_Control register is used to indicate that an error occurred when sending a command to a PS/2 device.

A fragment of C code that uses the PS/2 port is given in Figure 34. This code reads the content of the Data register, and saves data when it is available. If the code is used continually in a loop, then it stores the last three bytes of data received from the PS/2 port in the variables byte1, byte2, and byte3. This code is included as part of a larger sample
program called Media that is distributed with the Altera Monitor Program.

```c
volatile int * PS2_ptr = (int *) 0x10000100; // PS/2 port address
int PS2_data, RAVAIL;
char byte1 = 0, byte2 = 0, byte3 = 0;
...
PS2_data = *(PS2_ptr); // read the Data register in the PS/2 port
RAVAIL = (PS2_data & 0xFFFF0000) >> 16; // extract the RAVAIL field
if (RAVAIL > 0)
{
    /* save the last three bytes of data */
    byte1 = byte2;
    byte2 = byte3;
    byte3 = PS2_data & 0xFF;
}
...
```

Figure 34. An example of code that uses the PS/2 port.

5 Modifying the DE1 Media Computer

It is possible to modify the DE1 Media Computer by using Altera’s Quartus II software and SOPC Builder tool. Tutorials that introduce this software are provided in the University Program section of Altera’s web site. To modify the system it is first necessary to obtain all of the relevant design source code files. The DE1 Media Computer is available in two versions that specify the system using either Verilog HDL or VHDL. After these files have been obtained it is also necessary to install the source code for the I/O peripherals in the system. These peripherals are provided in the form of SOPC Builder IP cores and are included in a package available from Altera’s University Program web site, called the Altera University Program IP Cores.

Table 2 lists the names of the SOPC Builder IP cores that are used in this system. When the DE1 Media Computer design files are opened in the Quartus II software, these cores can be examined using the SOPC Builder tool. Each core has a number of settings that are selectable in the SOPC Builder tool, and includes a datasheet that provides detailed documentation.

The steps needed to modify the system are:
1. Install the *University Program IP Cores* from Altera’s University Program web site.

2. Copy the design source files for the DE1 Media Computer from the University Program web site. These files can be found in the *Design Examples* section of the web site.

3. Open the *DE1_Media_Computer.qpf* project in the Quartus II software.

4. Open the SOPC Builder tool in the Quartus II software, and modify the system as desired.

5. Generate the modified system by using the SOPC Builder tool.

6. It may be necessary to modify the Verilog or VHDL code in the top-level module, *DE1_Media_System.v/vhd*, if any I/O peripherals have been added or removed from the system.

7. Compile the project in the Quartus II software.

8. Download the modified system onto the DE1 board.

<table>
<thead>
<tr>
<th>I/O Peripheral</th>
<th>SOPC Builder Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>SDRAM Controller</td>
</tr>
<tr>
<td>SRAM</td>
<td>SRAM Controller</td>
</tr>
<tr>
<td>On-chip memory character buffer</td>
<td>Character Buffer for VGA Display</td>
</tr>
<tr>
<td>Red LED parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Green LED parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>7-segment displays parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Expansion parallel ports</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Slider switch parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>Pushbutton parallel port</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>PS/2 port</td>
<td>PS2 Controller</td>
</tr>
<tr>
<td>JTAG port</td>
<td>JTAG UART</td>
</tr>
<tr>
<td>Serial port</td>
<td>RS232 UART</td>
</tr>
<tr>
<td>Interval timer</td>
<td>Interval timer</td>
</tr>
<tr>
<td>System ID</td>
<td>System ID Peripheral</td>
</tr>
<tr>
<td>Audio/video configuration port</td>
<td>Audio and Video Config</td>
</tr>
<tr>
<td>Audio port</td>
<td>Audio</td>
</tr>
</tbody>
</table>

Table 2. SOPC Builder cores used in the DE1 Media Computer.

6 Making the System the Default Configuration

The DE1 Media Computer can be loaded into the nonvolatile FPGA configuration memory on the DE1 board, so that it becomes the default system whenever the board is powered on. Instructions for configuring the DE1 board in this manner can be found in the tutorial *Introduction to the Quartus II Software*, which is available from Altera’s University Program.
7 Memory Layout

Table 3 summarizes the memory map used in the DE1 Media Computer.

<table>
<thead>
<tr>
<th>Base Address</th>
<th>End Address</th>
<th>I/O Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>0x007FFFFF</td>
<td>SDRAM</td>
</tr>
<tr>
<td>0x08000000</td>
<td>0x087FFFFF</td>
<td>SRAM</td>
</tr>
<tr>
<td>0x10003020</td>
<td>0x1000302F</td>
<td>Pixel buffer control</td>
</tr>
<tr>
<td>0x09000000</td>
<td>0x09001FFF</td>
<td>On-chip memory character buffer</td>
</tr>
<tr>
<td>0x10003030</td>
<td>0x10003037</td>
<td>Character buffer control</td>
</tr>
<tr>
<td>0x10000000</td>
<td>0x1000000F</td>
<td>Red LED parallel port</td>
</tr>
<tr>
<td>0x10000010</td>
<td>0x1000001F</td>
<td>Green LED parallel port</td>
</tr>
<tr>
<td>0x10000020</td>
<td>0x1000002F</td>
<td>7-segment HEX3–HEX0 displays parallel port</td>
</tr>
<tr>
<td>0x10000040</td>
<td>0x1000004F</td>
<td>Slider switch parallel port</td>
</tr>
<tr>
<td>0x10000050</td>
<td>0x1000005F</td>
<td>Pushbutton parallel port</td>
</tr>
<tr>
<td>0x10000060</td>
<td>0x1000006F</td>
<td>JP1 Expansion parallel port</td>
</tr>
<tr>
<td>0x10000070</td>
<td>0x1000007F</td>
<td>JP2 Expansion parallel port</td>
</tr>
<tr>
<td>0x10000100</td>
<td>0x10000107</td>
<td>PS/2 port</td>
</tr>
<tr>
<td>0x10001000</td>
<td>0x10001007</td>
<td>JTAG UART port</td>
</tr>
<tr>
<td>0x10001010</td>
<td>0x10001017</td>
<td>Serial port</td>
</tr>
<tr>
<td>0x10002000</td>
<td>0x1000201F</td>
<td>Interval timer</td>
</tr>
<tr>
<td>0x10002020</td>
<td>0x10002027</td>
<td>System ID</td>
</tr>
<tr>
<td>0x10003000</td>
<td>0x1000301F</td>
<td>Audio/video configuration</td>
</tr>
<tr>
<td>0x10003040</td>
<td>0x1000304F</td>
<td>Audio port</td>
</tr>
</tbody>
</table>

Table 3. Memory layout used in the DE1 Media Computer.

8 Altera Monitor Program Integration

As we mentioned earlier, the DE1 Media Computer system, and the sample programs described in this document, are made available as part of the Altera Monitor Program. Figures 35 to 38 show a series of windows that are used in the Monitor Program to create a new project. In the first screen, shown in Figure 35, the user specifies a file system folder where the project will be stored, and gives the project a name. Pressing Next opens the window in Figure 36. Here, the user can select the DE1 Media Computer as a predesigned system. The Monitor Program then fills in the relevant information in the System details box, which includes the files called nios_system.ptf and DE1_Media_Computer.sof. The first of these files specifies to the Monitor Program information about the components that are available in the DE1 Media Computer, such as the type of processor and memory components, and the address map. The second file is an FPGA programming bitstream for the DE1 Media Computer, which can downloaded by the Monitor Program into the DE1 board.
Pressing Next again opens the window in Figure 37. Here the user selects the type of program that will be used, such as Assembly language, or C. Then, the check box shown in the figure can be used to display the list of sample programs for the DE1 Media Computer that are described in this document. When a sample program is selected in this list, its source files, and other settings, can be copied into the project folder in subsequent screens of the Monitor Program.

Figure 38 gives the final screen that is used to create a new project in the Monitor Program. This screen shows the addresses of the reset and exception vectors for the system being used (the reset vector address in the DE1 Media Computer is 0, and the exception address is 0x20), and allows the user to specify the type of memory and offset address that should be used for the .text and .data sections of the user’s program. In cases where the reset vector can be set to the start of the user’s program, and no interrupts are being used, the offset addresses for the .text and .data sections would normally be left at 0. However, when interrupts are used, it is necessary to specify a value for the .text and .data sections such that enough space is available in the memory before the start of these sections to hold the executable code of the interrupt service routine. In the example shown in the figure, which corresponds to the sample program using interrupts in section 3, the offset of 0x400 is used.
MEDIA COMPUTER SYSTEM FOR THE ALTERA DE1 BOARD

Figure 36. Specifying the Nios II system.

Figure 37. Selecting sample programs.
Figure 38. Setting offsets for .text and .data.