
© March 2009 Altera Corporation

NII51003-9.0.0
3. Programming Model
Introduction
This chapter describes the Nios® II programming model, covering processor features
at the assembly language level. Fully understanding the contents of this chapter
requires prior knowledge of computer architecture, operating systems, virtual
memory and memory management, software processes and process management,
exception handling, and instruction sets. This chapter assumes you have a detailed
understanding of the aforementioned concepts and focuses on how these concepts are
specifically implemented in the Nios II processor. Where possible, this chapter uses
industry-standard terminology.

This chapter discusses the following topics from the system programmer’s
perspective:

■ Operating modes, page 3–2—Defines the relationships between executable code
and memory.

■ Memory management unit (MMU), page 3–3—Describes virtual memory support
for full-featured operating systems.

■ Memory protection unit (MPU), page 3–8—Describes memory protection without
virtual memory management.

■ General-purpose registers, page 3–10—Describes the Nios II general register set.

■ Control registers, page 3–11—Describes the Nios II control register set.

■ Exception processing, page 3–25—Describes how the Nios II processor responds
to exceptions.

■ Processor reset state, page 3–27—Describes how the Nios II processor responds to
a processor reset signal.

■ Hardware-assisted debug processing, page 3–28—Describes how the Nios II
processor responds to break exceptions.

■ Hardware interrupts, page 3–29—Describes how the Nios II processor responds to
hardware interrupts.

■ Memory, cache memory, and peripheral organization, page 3–38—Describes how
the Nios II processor interfaces with memory and peripherals.

■ Instruction set categories, page 3–40—Introduces the Nios II instruction set.

■ Custom instructions, page 3–44—Describes the scope of Nios II custom
instructions.

1 Because of the flexibility and capability range of the Nios II processor, this
chapter covers topics that support a variety of operating systems and
runtime environments. While reading, be aware that all sections might not
apply to you. For example, if you are using a minimal system runtime
environment, you can skip the sections covering operating modes, the
MMU, the MPU, or the control registers exclusively used by the MMU and
MPU.
Nios II Processor Reference Handbook
Preliminary

3–2 Chapter 3: Programming Model
Operating Modes
f High-level software development tools are not discussed here. Refer to the Nios II
Software Developer’s Handbook for information about developing software.

Operating Modes
Operating modes control how the processor operates, manages system memory, and
accesses peripherals. The Nios II architecture supports these operating modes:

■ Supervisor mode

■ User mode

The following sections define the modes, their relationship to your system software
and application code, and their relationship to the Nios II MMU and Nios II MPU.
Refer to “Memory Management Unit” on page 3–3 for more information about the
Nios II MMU. Refer to “Memory Protection Unit” on page 3–8 for more information
about the Nios II MPU.

Supervisor Mode
Supervisor mode allows unrestricted operation of the processor. All code has access to
all processor instructions and resources. The processor may perform any operation
the Nios II architecture provides. Any instruction may be executed, any I/O operation
may be initiated, and any area of memory may be accessed.

Operating systems and other system software run in supervisor mode. In systems
with an MMU, application code runs in user mode, and the operating system,
running in supervisor mode, controls the application’s access to memory and
peripherals. In systems with an MPU, your system software controls the mode in
which your application code runs. In Nios II systems without an MMU or MPU, all
application and system code runs in supervisor mode.

Code that needs direct access to and control of the processor runs in supervisor mode.
For example, the processor enters supervisor mode whenever a processor exception
(including processor reset or break) occurs. Software debugging tools also use
supervisor mode to implement features such as breakpoints and watchpoints.

1 For systems without an MMU or MPU, all code runs in supervisor mode.

User Mode
User mode is available only when the Nios II processor in your hardware design
includes an MMU or MPU. User mode exists solely to support operating systems.
Operating systems (that make use of the processor’s user mode) run your application
code in user mode. The user mode capabilities of the processor are a subset of the
supervisor mode capabilities. Only a subset of the instruction set is available in user
mode.

The operating system determines which memory addresses are accessible to user
mode applications. Attempts by user mode applications to access memory locations
without user access enabled are not permitted and cause an exception. Code running
in user mode uses system calls to make requests to the operating system to perform
I/O operations, manage memory, and access other system functionality in the
supervisor memory.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 3: Programming Model 3–3
Memory Management Unit
The Nios II MMU statically divides the 32-bit virtual address space into user and
supervisor partitions. Refer to “Address Space and Memory Partitions” on page 3–4
for more information about the MMU memory partitions. The MMU provides
operating systems access permissions on a per-page basis. Refer to “Virtual
Addressing” on page 3–3 for more information about MMU pages.

The Nios II MPU supervisor and user memory divisions are determined by the
operating system or runtime environment. The MPU provides user access
permissions on a region basis. Refer to “Memory Regions” on page 3–8 for more
information about MPU regions.

Memory Management Unit
The Nios II processor provides an MMU to support full-featured operating systems.
Operating systems that require virtual memory rely on an MMU to manage the
virtual memory. When present, the MMU manages memory accesses including
translation of virtual addresses to physical addresses, memory protection, cache
control, and software process memory allocation.

Recommended Usage
Including the Nios II MMU in your Nios II hardware system is optional. The MMU is
only useful with an operating system that takes advantage of it.

Many Nios II systems have simpler requirements where minimal system software or a
small-footprint operating system (such as Altera® HAL or a third party real-time
operating system) is sufficient. Such software is unlikely to function correctly in a
hardware system with an MMU-based Nios II processor. Do not include an MMU in
your Nios II system unless your operating system requires it.

1 The Altera HAL and HAL-based real-time operating systems do not support the
MMU.

If your system needs memory protection, but not virtual memory management, refer
to “Memory Protection Unit” on page 3–8.

Memory Management
Memory management comprises two key functions:

■ Virtual addressing—Mapping a virtual memory space into a physical memory
space

■ Memory protection—Allowing access only to certain memory under certain
conditions

Virtual Addressing
A virtual address is the address that software uses. A physical address is the address
which the hardware outputs on the address lines of the Avalon® bus. The Nios II
MMU divides virtual memory into 4 KByte pages and physical memory into 4 KByte
frames.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–4 Chapter 3: Programming Model
Memory Management Unit
The MMU contains a hardware translation lookaside buffer (TLB). The operating
system is responsible for creating and maintaining a page table (or equivalent data
structures) in memory. The hardware TLB acts as a software managed cache for the
page table. The MMU does not perform any operations on the page table, such as
hardware table walks. Therefore the operating system is free to implement its page
table in any appropriate manner.

Table 3–1 shows how the Nios II MMU divides up the virtual address. There is a 20 bit
virtual page number (VPN) and a 12 bit page offset.

As input, the TLB takes a VPN plus a process identifier (to guarantee uniqueness). As
output, the TLB provides the corresponding physical frame number (PFN).

Distinct processes can use the same virtual address space. The process identifier,
concatenated with the virtual address, distinguishes identical virtual addresses in
separate processes. To determine the physical address, the Nios II MMU translates a
VPN to a PFN and then concatenates the PFN with the page offset. The bits in the
page offset are not translated.

Memory Protection
The Nios II MMU maintains read, write, and execute permissions for each page. The
TLB provides the permission information when translating a VPN. The operating
system can control whether or not each process is allowed to read data from, write
data to, or execute instructions on each particular page. The MMU also controls
whether accesses to each data page are cacheable or uncacheable by default.

Whenever an instruction attempts to access a page that either has no TLB mapping, or
lacks the appropriate permissions, the MMU generates a precise exception. Precise
exceptions enable the system software to update the TLB, and then re-execute the
instruction if desired.

Address Space and Memory Partitions
The MMU provides a 4 GByte virtual address space, and is capable of addressing up
to 4 GBytes of physical memory.

1 The amount of actual physical memory, determined by the configuration of your
hardware system, might be less than the available 4 GBytes of physical address space.

Virtual Memory Address Space
The 4 GByte virtual memory space is divided into partitions. The upper 2 GBytes of
memory is reserved for the operating system and the lower 2 GBytes is reserved for
user processes. Table 3–2 names and describes the partitions.

Table 3–1. MMU Virtual Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–5
Memory Management Unit
Each partition has a specific size, purpose, and relationship to the TLB:

■ The 512 MByte I/O partition provides access to peripherals.

■ The 512 MByte kernel partition provides space for the operating system kernel.

■ The 1 GByte kernel MMU partition is used by the TLB miss handler and kernel
processes.

■ The 2 GByte user partition is used by application processes.

I/O and kernel partitions bypass the TLB. The kernel MMU and user partitions use
the TLB. If all software runs in the kernel partition, the MMU is effectively disabled.

Physical Memory Address Space
The 4 GByte physical memory is divided into low memory and high memory. The
lowest 0.5 GBytes of physical address space is low memory. The upper 3.5 GBytes of
physical address space is high memory. Figure 3–1 shows how physical memory is
divided.

Table 3–2. Virtual Memory Partitions

Partition Virtual Address Range Used By Memory Access
User Mode

Access
Default Data
Cacheability

I/O (1) 0xE0000000–0xFFFFFFFF Operating
system

Bypasses TLB No Disabled

Kernel (1) 0xC0000000–0xDFFFFFFF Operating
system

Bypasses TLB No Enabled

Kernel MMU (1) 0x80000000–0xBFFFFFFF Operating
system

Uses TLB No Set by TLB

User 0x00000000–0x7FFFFFFF User
processes

Uses TLB Set by TLB Set by TLB

Note to Table 3–2:

(1) Supervisor-only partition

Figure 3–1. Division of Physical Memory

0x1FFFFFFF

0x00000000
0.5 GByte Low Memory

3.5 GByte High Memory

0xFFFFFFFF

0x20000000

Accessed directly or via TLB

Accessed only via TLB
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–6 Chapter 3: Programming Model
Memory Management Unit
High physical memory can only be accessed through the TLB. Any physical address
in low memory (29-bits or less) can be accessed through the TLB or by bypassing the
TLB. When bypassing the TLB, a 29-bit physical address is computed by clearing the
top three bits of the 32-bit virtual address.

1 To function correctly, the base physical address of all exception vectors (reset, general
exception, break, and fast TLB miss) must point to low physical memory so that
hardware can correctly map their virtual addresses into the kernel partition. This
restriction is enforced by the Nios II Processor MegaWizard interface in SOPC Builder.

Data Cacheability
Each partition has a rule that determines the default data cacheability property of
each memory access. When data cacheability is enabled on a partition of the address
space, a data access to that partition can be cached, if a data cache is present in the
system. When data cacheability is disabled, all access to that partition goes directly to
the Avalon switch fabric. Bit 31 is not used to specify data cacheability, as it is in
Nios II cores without MMUs. Virtual memory partitions that bypass the TLB have a
default data cacheability property, as shown in Table 3–2. For partitions that are
mapped through the TLB, data cacheability is controlled by the TLB on a per-page
basis.

Non-I/O load and store instructions use the default data cacheability property. I/O
load and store instructions are always non-cacheable, so they ignore the default data
cacheability property.

TLB Organization
A TLB functions as a cache for the operating system’s page table. In Nios II processors
with an MMU, one main TLB is shared by instruction and data accesses. The TLB is
stored in on-chip RAM and handles translations for instruction fetches and
instructions that perform data accesses.

The TLB is organized as an n-way set-associative cache. The software specifies the
way (set) when loading a new entry.

1 You can configure the number of TLB entries and the number of ways (set
associativity) of the TLB in SOPC Builder at system generation time. By default, the
TLB is a 16-way cache. The default number of entries depends on the target device, as
follows:

■ Cyclone®, Cyclone II, Stratix®, Stratix II, Stratix II GX—128 entries, requiring
one M4K RAM

■ Cyclone III, Stratix III, Stratix IV—256 entries, requiring one M9K RAM

For further detail, refer to the Instantiating the Nios II Processor in SOPC Builder
chapter of the Nios II Processor Reference Handbook.

The operating system software is responsible for guaranteeing that multiple TLB
entries do not map the same virtual address. The hardware behavior is undefined
when multiple entries map the same virtual address.

Each TLB entry consists of a tag and data portion. This is analogous to the tag and
data portion of instruction and data caches.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Chapter 3: Programming Model 3–7
Memory Management Unit
f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook for details on instruction and data caches.

The tag portion of a TLB entry contains information used when matching a virtual
address to a TLB entry. Table 3–3 describes the tag portion of a TLB entry.

The TLB data portion determines how to translate a matching virtual address to a
physical address. Table 3–4 describes the data portion of a TLB entry.

1 Because there is no “valid bit” in the TLB entry, the operating system software
invalidates the TLB by writing unique VPN values from the I/O partition of virtual
addresses into each TLB entry.

TLB Lookups
A TLB lookup attempts to convert a virtual address (VADDR) to a physical address
(PADDR).

The TLB lookup algorithm for instruction fetches is as follows:

if (VPN match and (G = 1 or PID match))
if (X = 1)

PADDR = concat(PFN, VADDR[11:0])
else

take TLB permission violation exception
else

if (EH bit of status register = 1)
take double TLB miss exception

else
take fast TLB miss exception

Refer to “Instruction-Related Exceptions” on page 3–30 for details on TLB exceptions.

Table 3–3. TLB Tag Portion Contents

Field Name Description

VPN VPN is the virtual page number field. This field is compared with the top 20 bits of
the virtual address.

PID PID is the process identifier field. This field is compared with the value of the
current process identifier stored in the tlbmisc control register, effectively
extending the virtual address. The field size is configurable at system generation
time, and can be between 8 and 14 bits.

G G is the global flag. When G = 1, the PID is ignored in the TLB lookup.

Table 3–4. TLB Data Portion Contents

Field Name Description

PFN PFN is the physical frame number field. This field specifies the upper bits of the
physical address. The size of this field depends on the range of physical addresses
present in the system. The maximum size is 20 bits.

C C is the cacheable flag. Determines the default data cacheability of a page. Can be
overridden for data accesses using I/O load and store family of Nios II instructions.

R R is the readable flag. Allows load instructions to read a page.

W W is the writeable flag. Allows store instructions to write a page.

X X is the executable flag. Allows instruction fetches from a page.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

3–8 Chapter 3: Programming Model
Memory Protection Unit
The TLB lookup algorithm for data accesses is as follows:

if (VPN match and (G = 1 or PID match))
if ((load and R = 1) or (store and W = 1) or flushda)

PADDR = concatenate(PFN, VADDR[11:0])
else

take TLB permission violation exception
else

if (EH bit of status register = 1)
take double TLB miss exception

else
take fast TLB miss exception

Memory Protection Unit
The Nios II processor provides an MPU for operating systems and runtime
environments that desire memory protection but do not require virtual memory
management. For information about memory protection with virtual memory
management, refer to “Memory Management Unit” on page 3–3.

When present and enabled, the MPU monitors all Nios II instruction fetches and data
memory accesses to protect against errant software execution. The MPU is a hardware
facility that system software uses to define memory regions and their associated
access permissions. The MPU triggers a precise exception if software attempts to
access a memory region in violation of its permissions, allowing you to intervene and
handle the exception as appropriate. The precise exception effectively prevents the
illegal access to memory.

The MPU extends the Nios II processor to support user mode and supervisor mode.
Typically, system software runs in supervisor mode and end-user applications run in
user mode, although all software can run in supervisor mode if desired. System
software defines which MPU regions belong to supervisor mode and which belong to
user mode.

Memory Regions
The MPU contains up to 32 instruction regions and 32 data regions. Each region is
defined by the following attributes:

■ Base address

■ Region type

■ Region index

■ Region size or upper address limit

■ Access permissions

■ Default cacheability (data regions only)

Base Address
The base address specifies the lowest address of the region. The base address is
aligned on a region-sized boundary. For example, a 4 Kbyte region must have a base
address that is a multiple of 4 Kbytes. If the base address is not properly aligned, the
behavior is undefined.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–9
Memory Protection Unit
Region Type
Each region is identified as either an instruction region or a data region.

Region Index
Each region has an index ranging from zero to the number of regions of its region type
minus one. Index zero has the highest priority.

Region Size or Upper Address Limit
An SOPC Builder generation-time option controls whether the amount of memory in
the region is defined by size or upper address limit. The size is an integer power of
two bytes. The limit is the highest address of the region plus one. The minimum
supported region size is 64 bytes but can be configured at system generation time for
larger minimum sizes to save logic resources. The maximum supported region size
equals the Nios II address space (a function of the address ranges of slaves connected
to the Nios II masters). Any access outside of the Nios II address space is considered
not to match any region and triggers an MPU region violation exception.

When regions are defined by size, the size is encoded as a binary mask to facilitate the
following MPU region address range matching:

(address & region_mask) == region_base_address

When regions are defined by limit, the limit is encoded as an unsigned integer to
facilitate the following MPU region address range matching:

(address >= region_base) && (address < region_limit)

The region limit uses a less-than instead of a less-than-or-equal-to comparison
because less-than provides a more efficient implementation. The limit is one bit larger
than the address so that full address range may be included in a range. Defining the
region by limit results in slower and larger address range match logic than defining
by size but allows finer granularity in region sizes.

Access Permissions
The access permissions consist of execute permissions for instruction regions and
read/write permissions for data regions. Any instruction that performs a memory
access that violates the access permissions triggers an exception. Additionally, any
instruction that performs a memory access that does not match any region triggers an
exception.

Default Cacheability
The default cacheability specifies whether normal load and store instructions access
the data cache or bypass the data cache. The default cacheability is only present for
data regions. You can override the default cacheability by using the ldio or stio
instructions. The bit 31 cache bypass feature is available when the MPU is present.
Refer to “Cache Memory” on page 3–38 for more information on cache bypass.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–10 Chapter 3: Programming Model
General-Purpose Registers
Overlapping Regions
The memory addresses of regions can overlap. Overlapping regions have several uses
including placing markers or small holes inside of a larger region. For example, the
stack and heap may be located in the same region. To detect stack/heap overflows,
you can define a small region between the stack and heap with no access permissions
and assign it a higher priority than the larger region. Any access attempts to the hole
region trigger an exception informing system software about the stack/heap
overflow.

If regions overlap so that a particular access matches more than one region, the region
with the highest priority (lowest index) determines the access permissions and default
cacheability.

Enabling the MPU
The MPU is disabled on system reset. System software enables and disables the MPU
by writing to a control register. Before enabling the MPU, you must create at least one
instruction and one data region, otherwise unexpected results can occur. Refer to
“Working with the MPU” on page 3–24 for more information.

General-Purpose Registers
The Nios II architecture provides thirty-two 32-bit general-purpose registers, r0
through r31, as shown in Table 3–5. Some registers have names recognized by the
assembler. For example, the zero register (r0) always returns the value zero, and
writing to zero has no effect. The ra register (r31) holds the return address used by
procedure calls and is implicitly accessed by call and ret instructions. C and C++
compilers use a common procedure-call convention, assigning specific meaning to
registers r1 through r23 and r26 through r28.

Table 3–5. The Nios II General Purpose Registers (Part 1 of 2)

Register Name Function Register Name Function

r0 zero 0x00000000 r16

r1 at Assembler temporary r17

r2 Return value r18

r3 Return value r19

r4 Register arguments r20

r5 Register arguments r21

r6 Register arguments r22

r7 Register arguments r23

r8 Caller-saved register r24 et Exception temporary

r9 Caller-saved register r25 bt Breakpoint temporary (1)

r10 Caller-saved register r26 gp Global pointer

r11 Caller-saved register r27 sp Stack pointer

r12 Caller-saved register r28 fp Frame pointer

r13 Caller-saved register r29 ea Exception return address

r14 Caller-saved register r30 ba Breakpoint return address (1)
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–11
Control Registers
f For more information, refer to the Application Binary Interface chapter of the Nios II
Processor Reference Handbook.

Control Registers
Control registers report the status and change the behavior of the processor. Control
registers are accessed differently than the general-purpose registers. The special
instructions rdctl and wrctl provide the only means to read and write to the
control registers and are only available in supervisor mode.

1 When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. Table 3–6 shows details of
the currently-defined control registers. All non-reserved control registers have names
recognized by the assembler.

r15 Caller-saved register r31 ra Return address

Notes to Table 3–5:

(1) This register is used exclusively by the JTAG debug module.

Table 3–5. The Nios II General Purpose Registers (Part 2 of 2)

Register Name Function Register Name Function

Table 3–6. Control Register Names and Bits

Register Name Register Contents

0 status Refer to Table 3–7 on page 3–12

1 estatus Refer to Table 3–9 on page 3–12

2 bstatus Refer to Table 3–10 on page 3–13

3 ienable Interrupt-enable bits

4 ipending Pending-interrupt bits

5 cpuid Unique processor identifier

6 Reserved Reserved

7 exception Refer to Table 3–11 on page 3–14

8 pteaddr (1) Refer to Table 3–13 on page 3–14

9 tlbacc (1) Refer to Table 3–15 on page 3–15

10 tlbmisc (1) Refer to Table 3–17 on page 3–16

11 Reserved Reserved

12 badaddr Refer to Table 3–19 on page 3–19

13 config (2) Refer to Table 3–21 on page 3–19

14 mpubase (2) Refer to Table 3–23 on page 3–20

15 mpuacc (2) Refer to Table 3–25 on page 3–21

16-31 Reserved Reserved

Notes to Table 3–6:

(1) Available only when the MMU is present. Otherwise reserved.
(2) Available only when the MPU is present. Otherwise reserved.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf

3–12 Chapter 3: Programming Model
Control Registers
The following sections describe the non-reserved control registers.

The status Register
The value in the status register controls the state of the Nios II processor. All status
bits are cleared at processor reset. Some bits are exclusively used by and available
only to certain features of the processor. Table 3–7 shows the layout of the status
register.

Table 3–8 gives details of the fields defined in the status register.

The estatus Register
The estatus register holds a saved copy of the status register during non-break
exception processing. Table 3–9 shows the layout of the status register.

The names of the defined bits are the same as the status register bits prepended with
the letter E. Table 3–8 also describes the details of the fields defined in the estatus
register.

The exception handler can examine estatus to determine the pre-exception status of
the processor. When returning from an exception, the eret instruction causes the
processor to copy estatus back to status, restoring the pre-exception value of status.
Refer to “Exception Processing” on page 3–25 for more information.

Table 3–7. status Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

E
H U

P
I
E

Table 3–8. status Control Register Field Descriptions

Bit Description Access Reset Available

EH (1) EH is the exception handler bit. The processor sets EH to one when an
exception occurs (including breaks). Software clears EH to zero when ready
to handle exceptions again. EH is used by the MMU to determine whether a
TLB miss exception is a fast TLB miss or a double TLB miss. In systems
without an MMU, EH is always zero.

Read/Write 0 MMU only

U (1) U is the user mode bit. When U = 1, the processor operates in user mode.
When U = 0, the processor operates in supervisor mode. In systems
without an MMU, U is always zero.

Read/Write 0 MMU or
MPU only

PIE PIE is the processor interrupt-enable bit. When PIE = 0, interrupts are
ignored. When PIE = 1, interrupts can be taken, depending on the value of
the ienable register.

Read/Write 0 Always

Notes to Table 3–8:

(1) The state where both EH and U are one is illegal and causes undefined results.

Table 3–9. estatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

E
E
H

E
U

E
P
I
E

Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–13
Control Registers
The bstatus Register
The bstatus register holds a saved copy of the status register during break
exception processing. Table 3–10 shows the layout of the status register.

The names of the defined bits are the same as the status register bits prepended with
the letter B. Table 3–8 also describes the details of the fields defined in the estatus
register.

When a break occurs, the value of the status register is copied into bstatus. Using
bstatus, the debugger can restore the status register to the value prior to the
break. The bret instruction causes the processor to copy bstatus back to status. Refer
to “Processing a Break” on page 3–28 for more information.

The ienable Register
The ienable register controls the handling of external hardware interrupts. Each bit
of the ienable register corresponds to one of the interrupt inputs, irq0 through
irq31. A value of one in bit n means that the corresponding irqn interrupt is
enabled; a bit value of zero means that the corresponding interrupt is disabled. Refer
to “Exception Processing” on page 3–25 for more information.

The ipending Register
The value of the ipending register indicates the value of the interrupt signals driven
into the processor. A value of one in bit n means that the corresponding irqn input is
asserted. Writing a value to the ipending register has no effect.

The cpuid Register
The cpuid register holds a constant value that uniquely identifies each processor in a
multi-processor system. The cpuid value is determined at system generation time
and is guaranteed to be unique for each processor in the system. Writing to the cpuid
register has no effect.

The exception Register
When the extra exception information option is enabled, the Nios II processor
provides information useful to system software for exception processing in the
exception and badaddr registers when an exception occurs. When your system
contains an MMU or MPU, the extra exception information is always enabled. When
no MMU or MPU is present, the Nios II Megawizard interface gives you the option to
have the processor provide the extra exception information.

To see how to control the extra exception information option, refer to the Instantiating
the Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

Table 3–11 shows the layout of the exception register.

Table 3–10. bstatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

B
E
H

B
U

B
P
I
E

© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

3–14 Chapter 3: Programming Model
Control Registers
Table 3–12 gives details of the fields defined in the exception register.

The pteaddr Register
The pteaddr register contains the virtual address of the operating system’s page
table and is only available in systems with an MMU. The pteaddr register layout
accelerates fast TLB miss exception handling. Table 3–13 shows the layout of the
pteaddr register.

Table 3–14 gives details of the fields defined in the pteaddr register.

Software writes to the PTBASE field when switching processes. Hardware never
writes to the PTBASE field.

Software writes to the VPN field when writing a TLB entry. Hardware writes to the
VPN field on a fast TLB miss exception, a TLB permission violation exception, or on a
TLB read operation. The VPN field is not written on any exceptions taken when an
exception is already active, that is, when status.EH is already one.

The tlbacc Register
The tlbacc register is used to access TLB entries and is only available in systems
with an MMU. The tlbacc register holds values that software will write into a TLB
entry or has previously read from a TLB entry. The tlbacc register provides access to
only a portion of a complete TLB entry. pteaddr.VPN and tlbmisc.PID hold the
remaining TLB entry fields.

Table 3–15 shows the layout of the tlbacc register.

Table 3–11. exception Control Register Field Descriptions

Field Description Access Reset Available

CAUSE CAUSE is written by the Nios II processor when any non-break
exception occurs. CAUSE contains a code for the highest-priority
exception occurring at the time. The Cause column in Table 3–31 on
page 3–26 shows the CAUSE field value for each exception.

Read 0 Only with
extra

exception
information

Table 3–12. exception Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CAUSE Rsvd

Table 3–13. pteaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTBASE VPN Rsvd

Table 3–14. pteaddr Control Register Field Descriptions

Field Description Access Reset Available

PTBASE PTBASE is the base virtual address of the page table. Read/Write 0 Only with
MMU

VPN VPN is the virtual page number. VPN can be set by both hardware
and software.

Read/Write 0 Only with
MMU
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–15
Control Registers
Table 3–16 gives details of the fields defined in the tlbacc register.

Issuing a wrctl instruction to the tlbacc register writes the tlbacc register with
the specified value. If tlbmisc.WE = 1, the wrctl instruction also initiates a TLB
write operation, which writes a TLB entry. The TLB entry written is specified by the
line portion of pteaddr.VPN and the tlbmisc.WAY field. The value written is
specified by the value written into tlbacc along with the values of pteaddr.VPN
and tlbmisc.PID. A TLB write operation also increments tlbmisc.WAY, allowing
software to quickly modify TLB entries.

Issuing a rdctl instruction to the tlbacc register returns the value of the tlbacc
register. The tlbacc register is written by hardware when software triggers a TLB
read operation (that is, when wrctl sets tlbmisc.RD to one).

The tlbacc register format is the recommended format for entries in the operating
system page table. The IG bits are ignored by the hardware on wrctl to tlbacc and
read back as zero on rdctl from tlbacc. The operating system can use the IG bits to
hold operating system specific information without having to clear these bits to zero
on a TLB write operation.

The tlbmisc Register
The tlbmisc register contains the remaining TLB-related fields and is only available
in systems with an MMU. Table 3–17 shows the layout of the tlbmisc register.

Table 3–15. tlbacc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IG C R W X G PFN

Table 3–16. tlbacc Control Register Field Descriptions

Field Description Access Reset Available

IG IG is ignored by hardware and available to hold operating system
specific information. Read as zero but can be written as non-zero.

Read/Write 0 Only with
MMU

C C is the data cacheable flag. When C = 0, data accesses are
uncacheable. When C = 1, data accesses are cacheable.

Read/Write 0 Only with
MMU

R R is the readable flag. When R = 0, load instructions are not allowed
to access memory. When R = 1, load instructions are allowed to
access memory.

Read/Write 0 Only with
MMU

W W is the writable flag. When W = 0, store instructions are not allowed
to access memory. When W = 1, store instructions are allowed to
access memory.

Read/Write 0 Only with
MMU

X X is the executable flag. When X = 0, instructions are not allowed to
execute. When X = 1, instructions are allowed to execute.

Read/Write 0 Only with
MMU

G G is the global flag. When G = 0, tlbmisc.PID is included in the
TLB lookup. When G = 1, tlbmisc.PID is ignored and only the
virtual page number is used in the TLB lookup.

Read/Write 0 Only with
MMU

PFN PFN is the physical frame number field. All unused upper bits must
be zero.

Read/Write 0 Only with
MMU
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–16 Chapter 3: Programming Model
Control Registers
Table 3–18 gives details of the fields defined in the tlbmisc register.

The sections below provide further details of the tlbmisc fields.

The RD Flag
System software triggers a TLB read operation by setting tlbmisc.RD (with a wrctl
instruction). A TLB read operation loads the following register fields with the
contents of a TLB entry:

■ The tag portion of pteaddr.VPN

■ tlbmisc.PID

■ The tlbacc register

The TLB entry to be read is specified by the following values:

■ the line portion of pteaddr.VPN

■ tlbmisc.WAY

Table 3–17. tlbmisc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WAY (1)

R
D

W
E

PID (1)

D
B
L

B
A
D

P
E
R
M D

Notes to Table 3–17:

(1) This field size is variable. Unused upper bits must written as zero.

Table 3–18. tlbmisc Control Register Field Descriptions

Field Description Access Reset Available

WAY The WAY field controls the mapping from the VPN to a particular
TLB entry.

Read/Write 0 Only with
MMU

RD RD is the read flag. Setting RD to one triggers a TLB read operation. Write 0 Only with
MMU

WE WE is the TLB write enable flag. When WE = 1, a write to tlbacc
writes through to a TLB entry.

Read/Write 0 Only with
MMU

PID PID is the process identifier field. Read/Write 0 Only with
MMU

DBL (1) DBL is the double TLB miss exception flag. Read 0 Only with
MMU

BAD (1) BAD is the bad virtual address exception flag. Read 0 Only with
MMU

PERM (1) PERM is the TLB permission violation exception flag. Read 0 Only with
MMU

D D is the data access exception flag. When D = 1, the exception is a
data access exception. When D = 0, the exception is an instruction
access exception.

Read 0 Only with
MMU

Notes to Table 3–18:

(1) You can also use exception.CAUSE to determine these exceptions.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–17
Control Registers
When system software changes the fields that specify the TLB entry, there is no
immediate effect on pteaddr.VPN, tlbmisc.PID, or the tlbacc register. The
registers retain their previous values until the next TLB read operation is initiated. For
example, when the operating system sets pteaddr.VPN to a new value, the contents
of tlbacc continues to reflect the previous TLB entry. tlbacc does not contain the
new TLB entry until after an explicit TLB read.

The WE Flag
When WE = 1, a write to tlbacc writes the tlbacc register and a TLB entry. When WE
= 0, a write to tlbacc only writes the tlbacc register.

Hardware sets the WE flag to one on a TLB permission violation exception, and on a
TLB miss exception when status.EH = 0. When a TLB write operation writes the
tlbacc register, the write operation also writes to a TLB entry when WE = 1.

The WAY Field
The WAY field controls the mapping from the VPN to a particular TLB entry. WAY
specifies the set to be written to in the TLB. The MMU increments WAY when system
software performs a TLB write operation. Unused upper bits in WAY must be written
as zero.

1 The number of ways (sets) is configurable in SOPC Builder at generation time, up to a
maximum of 16.

The PID Field
PID is a unique identifier for the current process that effectively extends the virtual
address. The process identifier can be less than 14 bits. Any unused upper bits must
be zero.

tlbmisc.PID contains the PID field from a TLB tag. The operating system must set
the PID field when switching processes, and before each TLB write operation.

1 Use of the process identifier is optional. To implement memory management without
process identifiers, clear tlbmisc.PID to zero. Without a process identifier, all
processes share the same virtual address space.

The MMU sets tlbmisc.PID on a TLB read operation. When the software triggers a
TLB read, by setting tlbmisc.RD to one with the wrctl instruction, the PID value
read from the TLB has priority over the value written by the wrctl instruction.

The size of the PID field is configured in SOPC Builder at system generation, and can
be from 8 to 14 bits. If system software defines a process identifier smaller than the
PID field, unused upper bits must be written as zero.

The DBL Flag
During a general exception, the processor sets DBL to one when a double TLB miss
condition exists. Otherwise, the processor clears DBL to zero.

The DBL flag indicates whether the most recent exception is a double TLB miss
condition. When a general exception occurs, the MMU sets DBL to one if a double TLB
miss is detected, and clears DBL to zero otherwise.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–18 Chapter 3: Programming Model
Control Registers
The BAD Flag
During a general exception, the processor sets BAD to one when a bad virtual address
condition exists, and clears BAD to zero otherwise. The following exceptions set the
BAD flag to one:

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

Refer to Table 3–31 on page 3–26 for more information on these exceptions.

The PERM Flag
During a general exception, the processor sets PERM to one for a TLB permission
violation exception, and clears PERM to zero otherwise.

The D Flag
The D flag indicates whether the exception is an instruction access exception or a data
access exception. During a general exception, the processor sets D to one when the
exception is related to a data access, and clears D to zero for all other non-break
exceptions.

The following exceptions set the D flag to one:

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ TLB permission violation (read or write)

■ Misaligned data address

■ Supervisor-only data address

The badaddr Register
When the extra exception information option is enabled, the Nios II processor
provides information useful to system software for exception processing in the
exception and badaddr registers when an exception occurs. When your system
contains an MMU or MPU, the extra exception information is always enabled. When
no MMU or MPU is present, the Nios II Megawizard interface gives you the option to
have the processor provide the extra exception information.

To see how to control the extra exception information option, refer to the Instantiating
the Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

When the option for extra exception information is enabled and a processor exception
occurs, the badaddr register contains the byte instruction or data address associated
with certain exceptions at the time the exception occurred. Table 3–31 on page 3–26
shows which exceptions write the badaddr register along with the value written.
Table 3–19 shows the layout of the badaddr register.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Chapter 3: Programming Model 3–19
Control Registers
Table 3–20 gives details of the fields defined in the badaddr register.

The BADDR field allows up to a 32-bit instruction address or data address. If an MMU
or MPU is present, the BADDR field is 32 bits because MMU and MPU instruction and
data addresses are always full 32-bit values. When an MMU is present, the BADDR
field contains the virtual address.

If there is no MMU or MPU and the Nios II address space is less than 32 bits, unused
high-order bits are written and read as zero. If there is no MMU, bit 31 of a data
address (used to bypass the data cache) is always zero in the BADDR field.

The config Register
The config register configures Nios II runtime behaviors that do not need to be
preserved during exception processing (in contrast to the information in the status
register). Table 3–21 shows the layout of the config register.

Table 3–22 gives details of the fields defined in the config register

The mpubase Register
The mpubase register works in conjunction with the mpuacc register to set and
retrieve MPU region information and is only available in systems with an MPU.
Table 3–23 shows the layout of the mpubase register.

Table 3–19. badaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADDR

Table 3–20. badaddr Control Register Field Descriptions

Field Description Access Reset Available

BADDR BADDR contains the byte instruction address or data address
associated with an exception when certain exceptions occur. The
Address column of Table 3–31 on page 3–26 shows which
exceptions write the BADDR field.

Read 0 Only with
extra

exception
information

Table 3–21. config Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

P
E

Table 3–22. config Control Register Field Descriptions

Field Description Access Reset Available

PE PE is the memory protection enable bit. When PE =1, the MPU is
enabled. When PE = 0, the MPU is disabled. In systems without an
MPU, PE is always zero.

Read/Write 0 Only with
MPU
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–20 Chapter 3: Programming Model
Control Registers
Table 3–24 gives details of the fields defined in the mpubase register
.

The BASE field specifies the base address of an MPU region. The 25-bit BASE field
corresponds to bits 6 through 30 of the base address, making the base address always
a multiple of 64 bytes. If the minimum region size set in SOPC Builder at generation
time is larger than 64 bytes, unused low-order bits of the BASE field must be written
as zero and are read as zero. For example, if the minimum region size is 1024 bytes,
the four least-significant bits of the BASE field (bits 6 though 9 of the mpubase
register) must be zero. Similarly, if the Nios II address space is less than 31 bits,
unused high-order bits must also be written as zero and are read as zero.

The INDEX and D fields specify the region information to access when an MPU region
read or write operation is performed. The D field specifies whether the region is a data
region or an instruction region. The INDEX field specifies which of the 32 data or
instruction regions to access. If there are fewer than 32 instruction or 32 data regions,
unused high-order bits must be written as zero and are read as zero.

Refer to “MPU Region Read and Write Operations” on page 3–24 for more
information on MPU region read and write operations.

The mpuacc Register
The mpuacc register works in conjunction with the mpubase register to set and
retrieve MPU region information and is only available in systems with an MPU. The
mpuacc register consists of attributes that will be set or have been retrieved which
define the MPU region. The mpuacc register only holds a portion of the attributes that
define an MPU region. The remaining portion of the MPU region definition is held by
the BASE field of the mpubase register.

An SOPC Builder generation-time option controls whether the mpuacc register
contains a MASK or LIMIT field. Table 3–25 shows the layout of the mpuacc register
with the MASK field. Table 3–26 shows the layout of the mpuacc register with the
LIMIT field.

Table 3–23. mpubase Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BASE (2) INDEX (1) D

Notes to Table 3–23:

(1) This field size is variable. Unused upper bits must written as zero.
(2) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–24. mpubase Control Register Field Descriptions

Field Description Access Reset Available

BASE BASE is the base memory address of the region identified by the
INDEX and D fields.

Read/Write 0 Only with
MPU

INDEX INDEX is the region index number. Read/Write 0 Only with
MPU

D D is the region access bit. When D =1, INDEX refers to a data
region. When D = 0, INDEX refers to an instruction region.

Read/Write 0 Only with
MPU
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–21
Control Registers
Table 3–27 gives details of the fields defined in the mpuacc register.

The sections below provide further details of the mpuacc fields.

The MASK Field
When the amount of memory reserved for a region is defined by size, the MASK field
specifies the size of the memory region. The MASK field is the same number of bits as
the BASE field of the mpubase register.

1 Unused high-order or low-order bits must be written as zero and are read as zero.

Table 3–28 shows the MASK field encodings for all possible region sizes in a full 31-bit
byte address space.

Table 3–25. mpuacc Control Register Fields for MASK Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MASK (1) C PERM

R
D

W
R

Note to Table 3–25:

(1) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–26. mpuacc Control Register Fields for LIMIT Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT (1) C PERM

R
D

W
R

Note to Table 3–26:

(1) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–27. mpuacc Control Register Field Descriptions

Field Description Access Reset Available

MASK (1) MASK specifies the size of the region. Read/Write 0 Only with
MPU

LIMIT (1) LIMIT specifies the upper address limit of the region. Read/Write 0 Only with
MPU

C C is the data cacheable flag. C only applies to MPU data regions and
determines the default cacheability of a data region. When C = 0, the
data region is uncacheable. When C = 1, the data region is
cacheable.

Read/Write 0 Only with
MPU

PERM PERM specifies the access permissions for the region. Read/Write 0 Only with
MPU

RD RD is the read region flag. When RD = 1, wrctl instructions to the
mpuacc register perform a read operation.

Write 0 Only with
MPU

WE WR is the write region flag. When WR = 1, wrctl instructions to the
mpuacc register perform a write operation.

Write 0 Only with
MPU

Note to Table 3–27:

(1) The MASK and LIMIT fields are mutually exclusive. Refer to Table 3–25 and Table 3–26.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–22 Chapter 3: Programming Model
Control Registers
Bit 31 of the mpuacc register is not used by the MASK field. Because memory region
size is already a power of two, one less bit is needed. The MASK field contains the
following value, where region_size is in bytes:

MASK = 0x1FFFFFF << log2(region_size >> 6)

The LIMIT Field
When the amount of memory reserved for a region is defined by an upper address
limit, the LIMIT field specifies the upper address of the memory region plus one. For
example, to achieve a memory range for byte addresses 0x4000 to 0x4fff with a 256
byte minimum region size, the BASE field of the mpubase register is set to 0x40
(0x4000 >> 8) and the LIMIT field is set to 0x50 (0x5000 >> 8). Because the
LIMIT field is one more bit than the number of bits of the BASE field of the mpubase
register, bit 31 of the mpuacc register is available to the LIMIT field.

Table 3–28. MASK Region Size Encodings

MASK Encoding Region Size

0x1FFFFFF 64 bytes

0x1FFFFFE 128 bytes

0x1FFFFFC 256 bytes

0x1FFFFF8 512 bytes

0x1FFFFF0 1 Kbyte

0x1FFFFE0 2 Kbytes

0x1FFFFC0 4 Kbytes

0x1FFFF80 8 Kbytes

0x1FFFF00 16 Kbytes

0x1FFFE00 32 Kbytes

0x1FFFC00 64 Kbytes

0x1FFF800 128 Kbytes

0x1FFF000 256 Kbytes

0x1FFE000 512 Kbytes

0x1FFC000 1 Mbyte

0x1FF8000 2 Mbytes

0x1FF0000 4 Mbytes

0x1FE0000 8 Mbytes

0x1FC0000 16 Mbytes

0x1F80000 32 Mbytes

0x1F00000 64 Mbytes

0x1E00000 128 Mbytes

0x1C00000 256 Mbytes

0x1800000 512 Mbytes

0x1000000 1 Gbyte

0x0000000 2 Gbytes
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–23
Control Registers
The C Flag
The C flag determines the default data cacheability of an MPU region. The C flag only
applies to data regions. For instruction regions, the C bit must be written with 0 and is
always read as 0.

When data cacheability is enabled on a data region, a data access to that region can be
cached, if a data cache is present in the system. You can override the default
cacheability and force an address to non-cacheable with an ldio or stio instruction.

1 The bit 31 cache bypass feature is supported when the MPU is present. Refer to
“Cache Memory” on page 3–38 for more information on cache bypass.

The PERM Field
The PERM field specifies the allowed access permissions. Table 3–29 shows possible
values of the PERM field for instruction regions and Table 3–30 shows possible values
of the PERM field for data regions.

1 Unlisted table values are reserved and must not be used. If you use reserved values,
the resulting behavior is undefined.

The RD Flag
Setting the RD flag signifies that an MPU region read operation should be performed
when a wrctl instruction is issued to the mpuacc register. Refer to “MPU Region
Read and Write Operations” on page 3–24 for more information. The RD flag always
returns 0 when read by a rdctl instruction.

The WR Flag
Setting the WR flag signifies that an MPU region write operation should be performed
when a wrctl instruction is issued to the mpuacc register. Refer to “MPU Region
Read and Write Operations” on page 3–24 for more information. The WR flag always
returns 0 when read by a rdctl instruction.

Table 3–29. Instruction Region Permission Values

Value Supervisor Permissions User Permissions

0 None None

1 Execute None

2 Execute Execute

Table 3–30. Data Region Permission Values

Value Supervisor Permissions User Permissions

0 None None

1 Read None

2 Read Read

4 Read/Write None

5 Read/Write Read

6 Read/Write Read/Write
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–24 Chapter 3: Programming Model
Working with the MPU
1 Setting both the RD and WR flags to one results in undefined behavior.

Working with the MPU
This section provides a basic overview of MPU initialization and the MPU region read
and write operations.

MPU Region Read and Write Operations
MPU region read and write operations are operations that access MPU region
attributes through the mpubase and mpuacc control registers. The mpubase.BASE,
mpuacc.MASK, mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM fields comprise the
MPU region attributes.

MPU region read operations retrieve the current values for the attributes of a region.
Each MPU region read operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX
and mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.RD field set
to one and the mpuacc.WR field cleared to zero. This action loads the mpubase
and mpuacc register values.

■ Execute a rdctl instruction to the mpubase register to read the loaded the
mpubase register value.

■ Execute a rdctl instruction to the mpuacc register to read the loaded the mpuacc
register value.

The MPU region read operation retrieves mpubase.BASE, mpuacc.MASK or
mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM values for the MPU region.

1 Values for the mpubase register are not actually retrieved until the wrctl instruction
to the mpuacc register is performed.

MPU region write operations set new values for the attributes of a region. Each MPU
region write operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX
and mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.WR field set
to one and the mpuacc.RD field cleared to zero.

The MPU region write operation sets the values for mpubase.BASE, mpuacc.MASK
or mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM as the new attributes for the MPU
region.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–25
Exception Processing
Normally, a wrctl instruction flushes the pipeline to guarantee that any side effects
of writing control registers take effect immediately after the wrctl instruction
completes execution. However, wrctl instructions to the mpubase and mpuacc
control registers do not automatically flush the pipeline. Instead, system software is
responsible for flushing the pipeline as needed (either by using a flushp instruction
or a wrctl instruction to a register that does flush the pipeline). Because a context
switch typically requires reprogramming the MPU regions for the new thread,
flushing the pipeline on each wrctl instruction would create unnecessary overhead.

MPU Initialization
Your system software must provide a data structure that contains the region
information described in “Memory Regions” on page 3–8 for each active thread. The
data structure ideally contains two 32-bit values that correspond to the mpubase and
mpuacc register formats.

The MPU is disabled on system reset. Before enabling the MPU, Altera recommends
initializing all MPU regions. Enable desired instruction and data regions by writing
each region’s attributes to the mpubase and mpuacc registers as described in “MPU
Region Read and Write Operations” on page 3–24. You must also disable unused
regions. When using region size, clear mpuacc.MASK to zero. When using limit, set
the mpubase.BASE to a non-zero value and clear mpuacc.LIMIT to zero.

1 You must enable at least one instruction and one data region, otherwise unpredictable
behavior might occur.

To perform a context switch, use a wrctl to write a zero to the PE field of the config
register to disable the MPU, define all MPU regions from the new thread’s data
structure, and then use another wrctl to write a one to config.PE to enable the
MPU.

Define each region using the pair of wrctl instructions described in “MPU Region
Read and Write Operations” on page 3–24. Repeat this dual wrctl instruction
sequence until all desired regions are defined.

Debugger Access
The debugger can access all MPU-related control registers using the normal wrctl
and rdctl instructions. During debugging, the Nios II ignores the MPU, effectively
temporarily disabling it.

Exception Processing
An exception is a transfer of control away from a program’s normal flow of execution,
caused by an event, either internal or external to the processor, which requires
immediate attention. Exception processing is the act of responding to an exception,
and then returning to the pre-exception execution state.

Each of the Nios II exceptions falls into one of the following categories:

■ Reset exceptions

■ Break exceptions
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–26 Chapter 3: Programming Model
Exception Processing
■ Interrupt exceptions

■ Instruction-related exceptions

Table 3–31 shows all possible Nios II exceptions in order of highest to lowest priority.
The following table columns specify information for the exceptions:

■ Exception—Gives the name of the exception.

■ Type—Specifies the exception type.

■ Available—Specifies when support for that exception is present.

■ Cause—Specifies the value of the CAUSE field of the exception register, for
exceptions that write the exception.CAUSE field.

■ Address—Specifies the instruction or data address associated with the exception.

■ Vector—Specifies which exception vector address the processor passes control to
when the exception occurs.

Table 3–31. Nios II Exceptions (In Decreasing Priority Order) (Part 1 of 2)

Exception Type Available Cause Address Vector

Reset Reset Always 0 Reset

Hardware Break Break Always — Break

Processor-only Reset
Request

Reset Always 1 Reset

Interrupt Interrupt Always 2 ea-4 (2) General exception

Supervisor-only Instruction
Address (1)

Instruction-related MMU 9 ea-4 (2) General exception

Fast TLB Miss
(instruction) (1)

Instruction-related MMU 12 pteaddr.VPN,
ea-4 (2)

Fast TLB Miss
exception

Double TLB Miss
(instruction) (1)

Instruction-related MMU 12 pteaddr.VPN,
ea-4 (2)

General exception

TLB Permission Violation
(execute) (1)

Instruction-related MMU 13 pteaddr.VPN,
ea-4 (2)

General exception

MPU Region Violation
(instruction) (1)

Instruction-related MPU 16 ea-4 (2) General exception

Supervisor-only Instruction Instruction-related MMU or MPU 10 ea-4 (2) General exception

Trap Instruction Instruction-related Always 3 ea-4 (2) General exception

Illegal Instruction Instruction-related Illegal
instruction
detection on,
MMU, or MPU

5 ea-4 (2) General exception

Unimplemented Instruction Instruction-related Always 4 ea-4 (2) General exception

Break Instruction Instruction-related Always — ba-4 (2) Break

Supervisor-only Data
Address

Instruction-related MMU 11 badaddr (data
address)

General exception

Misaligned Data Address Instruction-related Illegal memory
access
detection on,
MMU, or MPU

6 badaddr (data
address)

General exception
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–27
Exception Processing
The following sections describe each exception type in detail.

Reset Exceptions
When a processor reset signal is asserted, the Nios II processor performs the following
steps:

1. Clears the status register to 0x0.

2. Invalidates the instruction-cache line associated with the reset vector.

3. Begins executing the reset handler, located at the reset vector.

Clearing the status register disables hardware interrupts. If the MMU or MPU is
present, clearing the status register forces the processor into supervisor mode.

Invalidating the reset cache line guarantees that instruction fetches for reset code
comes from uncached memory.

Aside from the instruction-cache line associated with the reset vector, the contents of
the cache memories are indeterminate after reset. To ensure cache coherency after
reset, the reset handler located at the reset vector must immediately initialize the
instruction cache. Next, either the reset handler or a subsequent routine should
proceed to initialize the data cache.

The reset state is undefined for all other system components, including but not
limited to:

■ General-purpose registers, except for zero (r0) which is permanently zero.

Misaligned Destination
Address

Instruction-related Illegal memory
access
detection on,
MMU, or MPU

7 badaddr
(destination
address)

General exception

Division Error Instruction-related Division error
detection on

8 ea-4 (2) General exception

Fast TLB Miss (data) Instruction-related MMU 12 pteaddr.VPN,
badaddr (data
address)

Fast TLB Miss
exception

Double TLB Miss (data) Instruction-related MMU 12 pteaddr.VPN,
badaddr (data
address)

General exception

TLB Permission Violation
(read)

Instruction-related MMU 14 pteaddr.VPN,
badaddr (data
address)

General exception

TLB Permission Violation
(write)

Instruction-related MMU 15 pteaddr.VPN,
badaddr (data
address)

General exception

MPU Region Violation
(data)

Instruction-related MPU 17 badaddr (data
address)

General exception

Notes to Table 3–31:

(1) It is possible for any instruction fetch to cause this exception.
(2) Refer to Table 3–6 on page 3–11 for descriptions of the ea and ba registers.

Table 3–31. Nios II Exceptions (In Decreasing Priority Order) (Part 2 of 2)

Exception Type Available Cause Address Vector
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–28 Chapter 3: Programming Model
Exception Processing
■ Control registers, except for status which is reset to 0x0.

■ Instruction and data memory.

■ Cache memory, except for the instruction-cache line associated with the reset
vector.

■ Peripherals. Refer to the appropriate peripheral data sheet or specification for reset
conditions.

■ Custom instruction logic. Refer to the Nios II Custom Instruction User Guide for reset
conditions.

■ Nios II C-to-hardware (C2H) acceleration compiler logic.

Break Exceptions
A break is a transfer of control away from a program’s normal flow of execution for
the purpose of debugging. Software debugging tools can take control of the Nios II
processor via the JTAG debug module.

Break processing is the means by which software debugging tools implement debug
and diagnostic features, such as breakpoints and watchpoints. Break processing is a
type of exception processing, but the break mechanism is independent from general
exception processing. A break can occur during exception processing, enabling debug
tools to debug exception handlers.

The processor enters the break processing state under either of the following
conditions:

■ The processor executes the break instruction. This is often referred to as a
software break.

■ The JTAG debug module asserts a hardware break.

Processing a Break
A break causes the processor to take the following steps:

1. Stores the contents of the status register to bstatus.

2. Clears status.PIE to zero, disabling external processor interrupts.

3. Writes the address of the instruction following the break to the ba register (r30).

4. Clears status.U to zero, forcing the processor into supervisor mode, when the
system contains an MMU or MPU.

5. Sets status.EH to one, indicating the processor is handling an exception, when
the system contains an MMU.

6. Transfers execution to the break handler, stored at the break vector specified at
system generation time.

Register Usage
The bstatus control register and general-purpose registers bt (r25) and ba (r30)
are reserved for debugging. Code is not prevented from writing to these registers, but
debug code might overwrite the values. The break handler can use bt (r25) to help
save additional registers.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

Chapter 3: Programming Model 3–29
Exception Processing
Returning From a Break
After processing a break, the break handler releases control of the processor by
executing a bret instruction. The bret instruction restores status by copying the
contents of bstatus and returns program execution to the address in the ba register
(r30). Aside from bt, all registers are guaranteed to be returned to their pre-break
state after returning from the break handler.

Interrupt Exceptions
An external source such as a peripheral device can request a hardware interrupt by
asserting one of the processor’s 32 interrupt-request inputs, irq0 through irq31. A
hardware interrupt is generated if and only if all three of these conditions are true:

■ The PIE bit of the status control register is one.

■ An interrupt-request input, irqn, is asserted.

■ The corresponding bit n of the ienable control register is one.

Upon hardware interrupt, the processor clears the PIE bit to zero, disabling further
interrupts, and performs the other steps outlined in “Processing Interrupt and
Instruction-Related Exceptions” on page 3–35.

The value of the ipending control register shows which interrupt requests (IRQ) are
pending. By peripheral design, an IRQ bit is guaranteed to remain asserted until the
processor explicitly responds to the peripheral. Figure 3–2 shows the relationship
between ipending, ienable, PIE, and the generation of an interrupt.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–30 Chapter 3: Programming Model
Exception Processing
A software exception routine determines which of the pending interrupts has the
highest priority, and then transfers control to the appropriate interrupt service routine
(ISR). The ISR stops the interrupt from being visible (either by clearing it at the source
or masking it using ienable) before returning and/or before re-enabling PIE. The
ISR also saves estatus and ea (r29) before re-enabling PIE.

Interrupts can be re-enabled by writing one to the PIE bit, thereby allowing the
current ISR to be interrupted. Typically, the exception routine adjusts ienable so that
IRQs of equal or lower priority are disabled before re-enabling interrupts. Refer to
“Nested Exception Precautions” on page 3–37 for more information.

Instruction-Related Exceptions
Instruction-related exceptions occur during execution of Nios II instructions and
perform the steps outlined in “Processing Interrupt and Instruction-Related
Exceptions” on page 3–35.

The Nios II processor generates the following instruction-related exceptions. All
instruction-related exceptions are precise.

■ Trap instruction

■ Break instruction

Figure 3–2. Relationship Between ienable, ipending, PIE and Hardware Interrupts

IP
E

N
D

IN
G

0

IP
E

N
D

IN
G

1

IP
E

N
D

IN
G

2

ipending Register

IP
E

N
D

IN
G

31

irq0

irq1

irq2

irq31

31 0

IE
N

A
B

LE
0

IE
N

A
B

LE
1

IE
N

A
B

LE
2

31 0

ienable Register

External hardware
interrupt request
inputs irq[31..0]

Relationship Between ienable, ipending, PIE, and
 Interrupt Generation

. . .

. . .

. . .

PIE bit

Generate
Hardware
 Interrupt

IE
N

A
B

LE
31
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–31
Exception Processing
■ Unimplemented instruction

■ Illegal instruction

■ Supervisor-only instruction

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

■ Division error

■ Fast TLB miss

■ Double TLB miss

■ TLB permission violation

■ MPU region violation

Trap Instruction
When a program issues the trap instruction, it generates a software trap exception. A
program typically issues a software trap when the program requires servicing by the
operating system. The general exception handler for the operating system determines
the reason for the trap and responds appropriately.

Break Instruction
The break instruction is treated as a break exception. Refer to “Break Exceptions” on
page 3–28 for details.

Unimplemented Instruction
When the processor issues a valid instruction that is not implemented in hardware, an
unimplemented instruction exception is generated. The general exception handler
determines which instruction generated the exception. If the instruction is not
implemented in hardware, control is passed to an exception routine that might choose
to emulate the instruction in software. Refer to “Potential Unimplemented
Instructions” on page 3–44 for more information.

Illegal Instruction
Illegal instructions are instructions with an undefined opcode or opcode-extension
field. The Nios II processor can check for illegal instructions and generate an
exception when an illegal instruction is encountered. When your system contains an
MMU or MPU, illegal instruction checking is always on. When no MMU or MPU is
present, you have the option to have the processor check for illegal instructions.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

When the processor issues an instruction with an undefined opcode or
opcode-extension field, and illegal instruction exception checking is turned on, an
illegal instruction exception is generated.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

3–32 Chapter 3: Programming Model
Exception Processing
f Refer to the OP Encodings and OPX Encodings for R-Type Instructions tables in the
Instruction Set Reference chapter of the Nios II Processor Reference Handbook to see the
unused opcodes and opcode extensions.

1 All undefined opcodes are reserved. The processor does occasionally use some
undefined encodings internally. Executing one of these undefined opcodes does not
trigger an illegal instruction exception. Refer to the Nios II Core Implementation Details
chapter of the Nios II Processor Reference Handbook for details on each specific Nios II
core.

Supervisor-only Instruction
When your system contains an MMU or MPU and the processor is in user mode
(status.U = 1), executing a supervisor-only instruction results in a supervisor-only
instruction exception. The supervisor-only instructions are initd, initi, eret,
bret, rdctl, and wrctl.

This exception is implemented only in Nios II processors configured to use supervisor
mode and user mode. Refer to “Operating Modes” on page 3–2 for more information.

Supervisor-only Instruction Address
When your system contains an MMU and the processor is in user mode (status.U =
1), attempts to access a supervisor-only instruction address result in a supervisor-only
instruction address exception. Any instruction fetch can cause this exception. For
definitions of supervisor-only address ranges, refer to Table 3–2 on page 3–5.

This exception is implemented only in Nios II processors that include the MMU.

Supervisor-only Data Address
When your system contains an MMU and the processor is in user mode (status.U =
1), any attempt to access a supervisor-only data address results in a supervisor-only
data address exception. Instructions that can cause a supervisor-only data address
exception are all loads, all stores, and flushda.

This exception is implemented only in Nios II processors that include the MMU.

Misaligned Data Address
The Nios II processor can check for misaligned data addresses of load and store
instructions and generate an exception when a misaligned data address is
encountered. When your system contains an MMU or MPU, misaligned data address
checking is always on. When no MMU or MPU is present, you have the option to have
the processor check for misaligned data addresses.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

A data address is considered misaligned if the byte address is not a multiple of the
width of the load or store instruction data width (four bytes for word, two bytes for
half-word). Byte load and store instructions are always aligned so never take a
misaligned address exception.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Chapter 3: Programming Model 3–33
Exception Processing
Misaligned Destination Address
The Nios II processor can check for misaligned destination addresses of the callr,
jmp, ret, eret, bret, and all branch instructions and generate an exception when a
misaligned destination address is encountered. When your system contains an MMU
or MPU, misaligned destination address checking is always on. When no MMU or
MPU is present, you have the option to have the processor check for misaligned
destination addresses.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

A destination address is considered misaligned if the target byte address of the
instruction is not a multiple of four.

Division Error
The Nios II processor can check for division errors and generate an exception when a
division error is encountered.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

The division error exception detects divide instructions that produce a quotient that
can't be represented. The two cases are divide by zero and a signed division that
divides the largest negative number -2147483648 (0x80000000) by -1 (0xffffffff).
Division error detection is only available if divide instructions are supported by
hardware.

Fast TLB Miss
Fast TLB miss exceptions are implemented only in Nios II processors that include the
MMU. The MMU has a special exception vector (fast TLB miss), specified in SOPC
Builder at system generation time, specifically to handle TLB miss exceptions quickly.
Whenever the processor cannot find a TLB entry matching the VPN (optionally
extended by a process identifier), the result is a TLB miss exception. At the time of the
exception, the processor first checks status.EH. When status.EH = 0, no other
exception is already in process, so the processor considers the TLB miss a fast TLB
miss, sets status.EH to one, and transfers control to the fast TLB miss exception
handler (rather than to the general exception handler).

There are two kinds of fast TLB miss exceptions:

■ Fast TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Fast TLB miss (data)—Load, store, initda, and flushda instructions can cause
this exception.

The fast TLB miss exception handler can inspect the tlbmisc.D field to determine
which kind of fast TLB miss exception occurred.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

3–34 Chapter 3: Programming Model
Exception Processing
Double TLB Miss
Double TLB miss exceptions are implemented only in Nios II processors that include
the MMU. When a TLB miss exception occurs while software is currently processing
an exception (that is, when status.EH = 1), a double TLB miss exception is
generated. Specifically, whenever the processor cannot find a TLB entry matching the
VPN (optionally extended by a process identifier) and status.EH = 1, the result is a
double TLB miss exception. The most common scenario is that a double TLB miss
exception occurs during processing of a fast TLB miss exception. The processor
preserves register values from the original exception and transfers control to the
general exception handler which processes the newly-generated exception.

There are two kinds of double TLB miss exceptions:

■ Double TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Double TLB miss (data)—Load, store, initda, and flushda instructions can
cause this exception.

The general exception handler can inspect either the exception.CAUSE or
tlbmisc.D field to determine which kind of double TLB miss exception occurred.

TLB Permission Violation
TLB permission violation exceptions are implemented only in Nios II processors that
include the MMU. When a TLB entry is found matching the VPN (optionally
extended by a process identifier), but the permissions do not allow the access to
complete, a TLB permission violation exception is generated.

There are three kinds of TLB permission violation exceptions:

■ TLB permission violation (execute)—Any instruction fetch can cause this
exception.

■ TLB permission violation (read)—Any load instruction can cause this exception.

■ TLB permission violation (write)—Any store instruction can cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine
which permissions were violated.

1 The data cache management instructions (initd, initda, flushd, and flushda)
ignore the TLB permissions and do not generate TLB permission violation exceptions.

MPU Region Violation
MPU region violation exceptions are implemented only in Nios II processors that
include the MPU. An MPU region violation exception is generated under any of the
following conditions:

■ An instruction fetch or data address matched a region but the permissions for that
region did not allow the action to complete.

■ An instruction fetch or data address did not match any region.

The general exception handler reads the MPU region attributes to determine if the
address did not match any region or which permissions were violated.

There are two kinds of MPU region violation exceptions:
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–35
Exception Processing
■ MPU region violation (instruction)—Any instruction fetch can cause this
exception.

■ MPU region violation (data)—Load, store, initda, and flushda instructions can
cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine
which kind of MPU region violation exception occurred.

Other Exceptions
The previous sections describe all of the exception types defined by the Nios II
architecture at the time of publishing. However, some processor implementations
might generate exceptions that do not fall into the above categories. Therefore, a
robust exception handler must provide a safe response (such as issuing a warning) in
the event that it cannot identify the cause of an exception.

Processing Interrupt and Instruction-Related Exceptions
Except for the break instruction (refer to “Processing a Break” on page 3–28), this
section describes the actions the processor takes in response to interrupt and
instruction-related exceptions. Table 3–32 lists all possible non-break exception
processing actions performed by hardware. Check marks indicate which actions
apply to each of the processor scenarios, namely, systems without an MMU, systems
with an MMU, and systems with an MMU that is currently processing an exception.
For systems with an MMU, status.EH indicates whether or not exception
processing is already in progress. When status.EH = 1, exception processing is
already in progress and the states of the exception registers are preserved to retain the
original exception states.

Table 3–32. Non-Break Exception Processing Actions (Part 1 of 2)

Processor Actions (in order of occurrence) No MMU
MMU and

EH = 0
MMU and

EH = 1

Copies the contents of the status control register to the estatus control
register, saving the processor’s pre-exception status.

v v

Clears status.PIE to zero, disabling external processor interrupts. v v v

Writes the address of the instruction following the exception to the ea register
(r29).

v v

Clears status.U to zero, forcing the processor into supervisor mode. v v

Sets status.EH to one, indicating the processor is handling an exception. v

If fast TLB miss or a TLB permission violation exception, writes the VPN of the
address triggering the exception to pteaddr.VPN.

v

Conditionally writes to tlbmisc.D. Refer to “The D Flag” on page 3–18 for more
information.

v

Conditionally writes to tlbmisc.DBL. Refer to “The DBL Flag” on page 3–17 for
more information.

v v

Conditionally writes to tlbmisc.PERM. Refer to “The PERM Flag” on page 3–18
for more information.

v v

Conditionally writes to tlbmisc.BAD. Refer to “The BAD Flag” on page 3–18 for
more information.

v v
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–36 Chapter 3: Programming Model
Exception Processing
The fast TLB miss exception handler is a routine that handles only the fast TLB miss
execption. It is built for speed to process TLB misses quickly.

The general exception handler is a routine that determines the cause of each exception
(including the double TLB miss exception), and then dispatches an exception routine
to respond to the exception. The address of the general exception handler, specified in
SOPC Builder at system generation time, is called the exception vector in the Nios II
Megawizard interface. At run time this address is fixed, and software cannot modify
it. Programmers do not directly access exception vectors, and can write programs
without awareness of the address.

The fast TLB miss exception handler only handles the fast TLB miss exception. The
fast TLB miss exception handler address, specified in SOPC Builder at system
generation time, is called the fast TLB miss exception vector in the Nios II
Megawizard interface.

f For a detailed discussion of writing programs to take advantage of exception and
interrupt handling, refer to the Exception Handling chapter of the Nios II Software
Developer’s Handbook.

Determining the Cause of Interrupt and Instruction-Related Exceptions
The general exception handler must determine the cause of each exception and then
transfer control to an appropriate exception routine.

With Extra Exception Information
When you have included the extra exception information in your Nios II system, the
CAUSE field of the exception register (refer to “The exception Register” on
page 3–13) contains a code for the highest-priority exception occurring at the time and
the BADDR field of the badaddr register (refer to “The badaddr Register” on
page 3–18) contains the byte instruction address or data address for certain
exceptions. Refer to Table 3–31 on page 3–26 for more information.

To determine the cause of an exception, simply read the cause of the exception from
exception.CAUSE and then transfer control to the appropriate exception routine.

1 Extra exception information is always enabled in Nios II systems containing an MMU
or MPU.

Passes control to the general exception vector, invoking the general exception
handler

v v

Passes control to an exception handler:

■ If the exception is a TLB miss, control passes to the fast TLB miss exception
vector, invoking the fast TLB miss handler.

■ If the exception is not a TLB miss, control passes to the general exception vector,
invoking the general exception handler

v

Table 3–32. Non-Break Exception Processing Actions (Part 2 of 2)

Processor Actions (in order of occurrence) No MMU
MMU and

EH = 0
MMU and

EH = 1
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Chapter 3: Programming Model 3–37
Exception Processing
Without Extra Exception Information
When you have not included the extra exception information in your Nios II system,
your exception handler must determine the cause of exception itself. For this reason,
Altera recommends always enabling the extra exception information.

When the extra exception information is not available, use the following sequence to
determine the cause of an exception:

/* Check for interrupt exceptions first*/
if (estatus.EPIE == 1 and ipending != 0) {

handle interrupt

/* Decode exception from instruction */
/* Note: Because the exception register is included with the MMU and */
/* MPU, you never need to determine MMU or MPU exceptions by decoding */
} else {

decode instruction at $ea-4
if (instruction is trap)

handle trap exception
else if (instruction is load or store)

handle misaligned data address exception
else if (instruction is branch, bret, callr, eret, jmp, or ret)

handle misaligned destination address exception
else if (instruction is unimplemented)

handle unimplemented instruction exception
else if (instruction is illegal)

handle illegal instruction exception
else if (instruction is divide) {

if (denominator == 0)
handle division error exception

else if (instruction is signed divide and numerator == 0x80000000
and denominator == 0xffffffff)

handle division error exception
}

}

/* Not any known exception */
} else {

handle unknown exception (could be spurious interrupt)
}

}

Nested Exception Precautions
Exception routines must take special precautions before any of the following actions:

■ Issuing a trap instruction

■ Issuing a potentially unimplemented instruction

■ Re-enabling hardware interrupts

f For details about unimplemented instructions, refer to the Processor Architecture
chapter of the Nios II Processor Reference Handbook.

Before allowing any of these actions, the exception routine must save estatus and
ea (r29), then restore them properly before returning to preserve the pre-exception
state of the exception registers.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

3–38 Chapter 3: Programming Model
Memory and Peripheral Access
Returning From Interrupt and Instruction-Related Exceptions
The eret instruction is used to resume execution at the pre-exception address. Except
for the et register (r24), the exception routine must restore any registers modified
during exception processing before returning.

When executing the eret instruction, the processor performs the following tasks:

1. Copies the contents of estatus to status

2. Transfers program execution to the address in the ea register (r29)

Return Address Considerations
The return address requires some consideration when returning from exception
processing routines. After an exception occurs, ea contains the address of the
instruction following the point where the exception occurred.

When returning from instruction-related exceptions, execution must resume from the
instruction following the instruction where the exception occurred. Therefore, ea
contains the correct return address.

On the other hand, hardware interrupt exceptions must resume execution from the
interrupted instruction itself. In this case, the exception handler must subtract 4 from
ea to point to the interrupted instruction.

Memory and Peripheral Access
Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address space. Nios II
core implementations without MMUs restrict addresses to 31 bits or fewer. The MMU
supports the full 32-bit physical address.

f For details, refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the same address
space. The locations of memory and peripherals within the address space are
determined at system generation time. Reading or writing to an address that does not
map to a memory or peripheral produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read and write
byte, half-word (16-bit), or word (32-bit) data.

The Nios II architecture is little endian. For data wider than 8 bits stored in memory,
the more-significant bits are located in higher addresses.

The Nios II architecture supports register+immediate addressing.

Cache Memory
The Nios II architecture and instruction set accommodate the presence of data cache
and instruction cache memories. Cache management is implemented in software by
using cache management instructions. Instructions are provided to initialize the
cache, flush the caches whenever necessary, and to bypass the data cache to properly
access memory-mapped peripherals.

The Nios II architecture provides the following mechanisms to bypass the cache:
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Chapter 3: Programming Model 3–39
Memory and Peripheral Access
■ When no MMU is present, bit 31 of the address is reserved for bit-31 cache bypass.
With bit-31 cache bypass, the address space of processor cores is 2 GBytes, and the
high bit of the address controls the caching of data memory accesses.

■ When the MMU is present, cacheability is controlled by the MMU, and bit 31
functions as a normal address bit. For details, refer to “Address Space and
Memory Partitions” on page 3–4, and “TLB Organization” on page 3–6.

■ Cache bypass instructions, such as ldwio and stwio.

f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook for details of which processor cores implement bit-31 cache bypass. Refer to
Instruction Set Reference chapter of the Nios II Processor Reference Handbook for details of
the cache bypass instructions.

Code written for a processor core with cache memory behaves correctly on a
processor core without cache memory. The reverse is not true. If it is necessary for a
program to work properly on multiple Nios II processor core implementations, the
program must behave as if the instruction and data caches exist. In systems without
cache memory, the cache management instructions perform no operation, and their
effects are benign.

f For a complete discussion of cache management, refer to the Cache and Tightly Coupled
Memory chapter of the Nios II Software Developer’s Handbook.

Some consideration is necessary to ensure cache coherency after processor reset. Refer
to “Reset Exceptions” on page 3–27 for more information.

f For details on the cache architecture and the memory hierarchy refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Virtual Address Aliasing
A virtual address alias occurs when two virtual addresses map to the same physical
address. When an MMU and caches are present and the caches are larger than a page
(4 KBytes), the operating system must prevent illegal virtual address aliases. Because
the caches are virtually-indexed and physically-tagged, a portion of the virtual
address is used to select the cache line. If the cache is 4 KBytes or less in size, the
portion of the virtual address used to select the cache line fits with bits 11:0 of the
virtual address which have the same value as bits 11:0 of the physical address (they
are untranslated bits of the page offset). However, if the cache is larger than 4 KBytes,
bits beyond the page offset (bits 12 and up) are used to select the cache line and these
bits are allowed to be different than the corresponding physical address.

For example, in a 64 KByte direct-mapped cache with a 16-byte line, bits 15:4 are used
to select the line. Assume that virtual address 0x1000 is mapped to physical address
0xF000 and virtual address 0x2000 is also mapped to physical address 0xF000.
This is an illegal virtual address alias because accesses to virtual address 0x1000 use
line 0x1 and accesses to virtual address 0x2000 use line 0x2 even though they map to
the same physical address. This results in two copies of the same physical address in
the cache. With an n-byte direct-mapped cache, there could be n/4096 copies of the
same physical address in the cache if illegal virtual address aliases are not prevented.
The bits of the virtual address that are used to select the line and are translated bits
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

3–40 Chapter 3: Programming Model
Instruction Set Categories
(bits 12 and up) are known as the color of the address. An operating system avoids
illegal virtual address aliases by ensuring that if multiple virtual addresses map the
same physical address, the virtual addresses have the same color. Note though, the
color of the virtual addresses does not need to be the same as the color as the physical
address because the cache tag contains all the bits of the PFN.

Instruction Set Categories
This section introduces the Nios II instructions categorized by type of operation
performed.

Data Transfer Instructions
The Nios II architecture is a load-store architecture. Load and store instructions
handle all data movement between registers, memory, and peripherals. Memories and
peripherals share a common address space. Some Nios II processor cores use memory
caching and/or write buffering to improve memory bandwidth. The architecture
provides instructions for both cached and uncached accesses.

Table 3–33 describes the wide (32-bit) load and store instructions.

The data transfer instructions in Table 3–34 support byte and half-word transfers.

Table 3–33. Wide Data Transfer Instructions

Instruction Description

ldw

stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective address is the
sum of a register's contents and a signed immediate value contained in the instruction. Memory transfers can
be cached or buffered to improve program performance. This caching and buffering might cause memory
cycles to occur out of order, and caching might suppress some cycles entirely.

Data transfers for I/O peripherals should use ldwio and stwio.

ldwio

stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals without caching and
buffering. Access cycles for ldwio and stwio instructions are guaranteed to occur in instruction order and
are never suppressed.

Table 3–34. Narrow Data Transfer Instructions

Instruction Description

ldb
ldbu
stb
ldh
ldhu
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh sign-extend
the value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits.

stb and sth store byte and half-word values, respectively.

Memory accesses can be cached or buffered to improve performance. To transfer data to I/O peripherals,
use the “io” versions of the instructions, described below.

ldbio
ldbuio
stbio
ldhio
ldhuio
sthio

These operations load/store byte and half-word data from/to peripherals without caching or buffering.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–41
Instruction Set Categories
Arithmetic and Logical Instructions
Logical instructions support and, or, xor, and nor operations. Arithmetic
instructions support addition, subtraction, multiplication, and division operations.
Refer to Table 3–35.

Move Instructions
These instructions provide move operations to copy the value of a register or an
immediate value to another register. Refer to Table 3–36.

Comparison Instructions
The Nios II architecture supports a number of comparison instructions. All of these
compare two registers or a register and an immediate value, and write either one (if
true) or zero to the result register. These instructions perform all the equality and
relational operators of the C programming language. Refer to Table 3–37.

Table 3–35. Arithmetic and Logical Instructions

Instruction Description

and
or
xor
nor

These are the standard 32-bit logical operations. These operations take two register values and combine
them bit-wise to form a result for a third register.

andi
ori
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit immediate
value is zero-extended to 32 bits, and then combined with a register value to form the result.

andhi
orhi
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 bits to form
a 32-bit operand. Zeroes are shifted in from the right.

add
sub
mul
div
divu

These are the standard 32-bit arithmetic operations. These operations take two registers as input and store
the result in a third register.

addi
subi
muli

These instructions are immediate versions of the add, sub, and mul instructions. The instruction word
includes a 16-bit signed value.

mulxss
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose the
appropriate instruction depending on whether the operands should be treated as signed or unsigned
values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.

Table 3–36. Move Instructions

Instruction Description

mov
movhi
movi
movui
movia

mov copies the value of one register to another register. movi moves a 16-bit signed immediate value to a
register, and sign-extends the value to 32 bits. movui and movhi move an immediate 16-bit value into the
lower or upper 16-bits of a register, inserting zeros in the remaining bit positions. Use movia to load a
register with an address.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–42 Chapter 3: Programming Model
Instruction Set Categories
Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to
rotate or shift can be specified in a register or an immediate value. Refer to Table 3–38.

Program Control Instructions
The Nios II architecture supports the unconditional jump and call instructions listed
in Table 3–39. These instructions do not have delay slots.

Table 3–37. Comparison Instructions

Instruction Description

cmpeq ==

cmpne !=

cmpge signed >=

cmpgeu unsigned >=

cmpgt signed >

cmpgtu unsigned >

cmple unsigned <=

cmpleu unsigned <=

cmplt signed <

cmpltu unsigned <

cmpeqi
cmpnei
cmpgei
cmpgeui
cmpgti
cmpgtui
cmplei
cmpleui
cmplti
cmpltui

These instructions are immediate versions of the comparison operations.
They compare the value of a register and a 16-bit immediate value. Signed
operations sign-extend the immediate value to 32-bits. Unsigned operations
fill the upper bits with zero.

Table 3–38. Shift and Rotate Instructions

Instructio
n Description

rol
ror
roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate
value to specify the number of bits to rotate. The ror instructions provides right
bit-rotation.

There is no immediate version of ror, because roli can be used to implement the
equivalent operation.

sll
slli
sra
srl
srai
srli

These shift instructions implement the << and >> operators of the C programming
language. The sll, slli, srl, srli instructions provide left and right logical
bit-shifting operations, inserting zeros. The sra and srai instructions provide
arithmetic right bit-shifting, duplicating the sign bit in the most significant bit. slli,
srli and srai use an immediate value to specify the number of bits to shift.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 3: Programming Model 3–43
Instruction Set Categories
The conditional-branch instructions compare register values directly, and branch if
the expression is true. Refer to Table 3–40. The conditional branches support the
equality and relational comparisons of the C programming language:

■ == and !=

■ < and <= (signed and unsigned)

■ > and >= (signed and unsigned)

The conditional-branch instructions do not have delay slots.

Other Control Instructions
Table 3–41 shows other control instructions.

Table 3–39. Unconditional Jump and Call Instructions

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address, and
stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the return
address in register ra. This instruction serves the roll of dereferencing a C function pointer.

ret The ret instruction is used to return from subroutines called by call or callr. ret loads and executes
the instruction specified by the address in register ra.

jmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to implement switch
statements of the C programming language.

jmpi The jmpi instruction jumps to an absolute address using an immediate value to determine the absolute
address.

or This instruction branches relative to the current instruction. A signed immediate value gives the offset of the
next instruction to execute.

Table 3–40. Conditional-Branch Instructions

Instruction Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare two register
values and branch if the expression is true. Refer to “Comparison
Instructions” on page 3–41 for a description of the relational operations
implemented.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

3–44 Chapter 3: Programming Model
Instruction Set Categories
Custom Instructions
The custom instruction provides low-level access to custom instruction logic. The
inclusion of custom instructions is specified in SOPC Builder at system generation
time, and the function implemented by custom instruction logic is design dependent.

f For further details, refer to the “Custom Instructions” section of the Processor
Architecture chapter of the Nios II Processor Reference Handbook and the Nios II Custom
Instruction User Guide.

Machine-generated C functions and assembly macros provide access to custom
instructions, and hide implementation details from the user. Therefore, most software
developers never use the custom assembly instruction directly.

No-Operation Instruction
The Nios II assembler provides a no-operation instruction, nop.

Potential Unimplemented Instructions
Some Nios II processor cores do not support all instructions in hardware. In this case,
the processor generates an exception after issuing an unimplemented instruction.
Only the following instructions can generate an unimplemented instruction
exception:

■ mul

■ muli

■ mulxss

Table 3–41. Other Control Instructions

Instruction Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are similar to
the call/ret pair, but are used for exceptions. trap saves the status register in the estatus
register, saves the return address in the ea register, and then transfers execution to the general exception
handler. eret returns from exception processing by restoring status from estatus, and executing
the instruction specified by the address in ea.

break
bret

The break and bret instructions generate and return from breaks. break and bret are used
exclusively by software debugging tools. Programmers never use these instructions in application code.

rdctl
wrctl

These instructions read and write control registers, such as the status register. The value is read from
or stored to a general-purpose register.

flushd
flushda
flushi
initd
initda
initi

These instructions are used to manage the data and instruction cache memories.

flushp This instruction flushes all pre-fetched instructions from the pipeline. This is necessary before jumping to
recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before allowing execution of
subsequent load and store operations.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

Chapter 3: Programming Model 3–45
Referenced Documents
■ mulxsu

■ mulxuu

■ div

■ divu

■ initda

All other instructions are guaranteed not to generate an unimplemented instruction
exception.

An exception routine must exercise caution if it uses these instructions, because they
could generate another exception before the previous exception is properly handled.
Refer to “Unimplemented Instruction” on page 3–31 for more information regarding
unimplemented instruction processing.

Referenced Documents
This chapter references the following documents:

■ Nios II Software Developer’s Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Application Binary Interface chapter of the Nios II Processor Reference Handbook

■ Instruction Set Reference chapter of the Nios II Processor Reference Handbook

■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

■ Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s
Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Nios II Custom Instruction User Guide

Document Revision History
Table 3–42 shows the revision history for this document.

Table 3–42. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Maintenance release. —

November 2008

v8.1.0

Maintenance release. —
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

3–46 Chapter 3: Programming Model
Document Revision History
May 2008

v8.0.0

Added text to describe the MMU, MPU, and advanced exceptions. Added MMU, MPU, and
advanced exceptions.

October 2007

v7.2.0

■ Reworked text to refer to break and reset as exceptions.

■ Grouped exceptions, break, reset, and interrupts all under Exception
Processing.

■ Added table showing all Nios II exceptions (by priority).

■ Removed “ctl” references to control registers.

■ Added jmpi instruction to tables.

—

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Maintenance release. —

November 2006

v6.1.0

Maintenance release. —

May 2006

v6.0.0

Maintenance release. —

October 2005

v5.1.0

Maintenance release. —

May 2005

v5.0.0

Maintenance release. —

September 2004

v1.1

■ Added details for new control register ctl5.

■ Updated details of debug and break processing to reflect new
behavior of the break instruction.

—

May 2004

v1.0

Initial release. —

Table 3–42. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

	3. Programming Model
	Introduction
	Operating Modes
	Supervisor Mode
	User Mode

	Memory Management Unit
	Recommended Usage
	Memory Management
	Address Space and Memory Partitions
	TLB Organization
	TLB Lookups

	Memory Protection Unit
	Memory Regions
	Overlapping Regions
	Enabling the MPU

	General-Purpose Registers
	Control Registers
	The status Register
	The estatus Register
	The bstatus Register
	The ienable Register
	The ipending Register
	The cpuid Register
	The exception Register
	The pteaddr Register
	The tlbacc Register
	The tlbmisc Register
	The badaddr Register
	The config Register
	The mpubase Register
	The mpuacc Register

	Working with the MPU
	MPU Region Read and Write Operations
	MPU Initialization
	Debugger Access

	Exception Processing
	Reset Exceptions
	Break Exceptions
	Interrupt Exceptions
	Instruction-Related Exceptions
	Other Exceptions
	Processing Interrupt and Instruction-Related Exceptions
	Determining the Cause of Interrupt and Instruction-Related Exceptions
	Returning From Interrupt and Instruction-Related Exceptions

	Memory and Peripheral Access
	Cache Memory

	Instruction Set Categories
	Data Transfer Instructions
	Arithmetic and Logical Instructions
	Move Instructions
	Comparison Instructions
	Shift and Rotate Instructions
	Program Control Instructions
	Other Control Instructions
	Custom Instructions
	No-Operation Instruction
	Potential Unimplemented Instructions

	Referenced Documents
	Document Revision History

