
© March 2009 Altera Corporation

NII52006-9.0.0
8. Exception Handling
Introduction
This chapter discusses how to write programs to handle exceptions in the Nios® II
processor architecture. Emphasis is placed on how to process hardware interrupt
requests by registering a user-defined interrupt service routine (ISR) with the
hardware abstraction layer (HAL). This information applies to software projects
created either in the Nios II integrated development environment (IDE), or on the
command line.

This chapter contains the following sections:

■ “Introduction” on page 8–1

■ “Nios II Exceptions Overview” on page 8–1

■ “ISRs” on page 8–3

■ “ISR Performance Data” on page 8–7

■ “Improving ISR Performance” on page 8–8

■ “Debugging ISRs” on page 8–12

■ “Summary of Guidelines for Writing ISRs” on page 8–12

■ “HAL Exception Handler Implementation” on page 8–13

■ “The Instruction-Related Exception Handler” on page 8–19

■ “Exception Handling in an IDE Project” on page 8–21

f For low-level details about handling exceptions and interrupts on the Nios II
architecture, refer to the Programming Model chapter of the Nios II Processor Reference
Handbook.

Nios II Exceptions Overview
Nios II exception handling is implemented in classic RISC fashion, that is, all
exception types are handled by a single exception handler. As such, all exceptions
(hardware and software) are handled by code residing at a single location called the
“exception address”.

The Nios II processor provides the following exception types:

■ Hardware interrupts

■ Software exceptions, which fall into the following categories:

■ Unimplemented instructions

■ Software traps

■ Miscellaneous exceptions
Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

8–2 Chapter 8: Exception Handling
Nios II Exceptions Overview
Exception Handling Concepts
The following list outlines basic exception handling concepts, with the HAL terms
used for each one:

■ application context—The status of the Nios II processor and the HAL during
normal program execution, outside of the exception handler.

■ context switch—The process of saving the Nios II processor’s registers on an
exception, and restoring them on return from the interrupt service routine.

■ exception—Any condition or signal that interrupts normal program execution.

■ exception handler—The complete system of software routines that service all
exceptions and pass control to ISRs as necessary.

■ exception overhead—Additional processing required by exception processing.
The exception overhead for a program is the sum of all the time occupied by all
context switches.

■ hardware interrupt—An exception caused by a signal from a hardware device.

■ implementation-dependent instruction—A Nios II processor instruction that is
not supported on all implementations of the Nios II core. For example, the mul
and div instructions are implementation-dependent, because they are not
supported on the Nios II/e core.

■ interrupt context—The status of the Nios II processor and the HAL when the
exception handler is executing.

■ interrupt request (IRQ)—A signal from a peripheral requesting a hardware
interrupt.

■ interrupt service routine (ISR)—A software routine that handles an individual
hardware interrupt.

■ invalid instruction—An instruction that is not defined for any implementation of
the Nios II processor.

■ miscellaneous exception—An exception which is either a hardware interrupt, an
unimplemented instruction, nor a trap instruction.

■ software exception—An exception caused by a software condition. This includes
unimplemented instructions and trap instructions.

■ unimplemented instruction—An implementation-dependent instruction that is
not supported on the particular Nios II core implementation that is in your system.
For example, in the Nios II/e core, mul and div are unimplemented.

How the Hardware Works
The Nios II processor can respond to software exceptions and hardware interrupts. 32
independent hardware interrupt signals are available. These interrupt signals allow
software to prioritize interrupts, although the interrupt signals themselves have no
inherent priority.

When the Nios II processor responds to an exception, it performs the following tasks:

1. Saves the status register in estatus. This means that if hardware interrupts are
enabled, the EPIE bit of estatus is set.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Exception Handling 8–3
ISRs
2. Disables hardware interrupts.

3. Saves the next execution address in ea (r29).

4. Transfers control to the Nios II processor exception address.

All Nios II exception types are precise. This means that after an exception is handled,
the Nios II processor can re-execute the instruction that caused the exception

The Nios II processor always re-executes the instruction after an ISR.

Several exception types, such as the advanced exceptions, are optional in the Nios II
processor core. The presence of these exception types depends on how the hardware
designer configures the Nios II core at the time of hardware generation.

f For details about the Nios II processor exception and interrupt controller, including a
list of optional exception types, refer to the Processor Architecture chapter of the Nios II
Processor Reference Handbook.

1 Nios II exceptions and interrupts are not vectored. Therefore, the same exception
address receives control for all types of interrupts and exceptions. The exception
handler at that address must determine the type of exception or interrupt.

ISRs
Software often communicates with peripheral devices using interrupts. When a
peripheral asserts its IRQ, it causes an exception to the processor’s normal execution
flow. When such an IRQ occurs, an appropriate ISR must handle this interrupt and
return the processor to its pre-interrupt state on completion.

When you create a board support package (BSP) project (either through the Nios II
IDE, or on the command line), the build tools include all needed ISRs. You do not
need to write HAL ISRs unless you are interfacing to a custom peripheral. For
reference purposes, this section describes the framework provided by HAL BSPs for
handling hardware interrupts.

You can also look at existing handlers for Altera SOPC Builder components for
examples of how to write HAL ISRs.

f For more details about the Altera-provided HAL handlers, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

HAL API for ISRs
The HAL provides an application program interface (API) to help ease the creation
and maintenance of ISRs. This API also applies to programs based on certain RTOSs
such as MicroC/OS-II, because the full HAL API is available to these RTOS-based
programs. The HAL API defines the following functions to manage hardware
interrupt processing:

■ alt_irq_register()

■ alt_irq_disable()

■ alt_irq_enable()
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

8–4 Chapter 8: Exception Handling
ISRs
■ alt_irq_disable_all()

■ alt_irq_enable_all()

■ alt_irq_interruptible()

■ alt_irq_non_interruptible()

■ alt_irq_enabled()

f For details about these functions, refer to the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

Using the HAL API to implement ISRs requires that you perform the following steps:

1. Write your ISR that handles interrupts for a specific device.

2. Ensure that your program registers the ISR with the HAL by calling the
alt_irq_register() function. alt_irq_register() enables interrupts for
you, by calling alt_irq_enable_all().

Writing an ISR
The ISR you write must match the prototype that alt_irq_register() expects to
see. The prototype for your ISR function must match the prototype:

void isr (void* context, alt_u32 id)

The parameter definitions of context and id are the same as for the
alt_irq_register() function.

From the point of view of the HAL exception handling system, the most important
function of an ISR is to clear the associated peripheral’s interrupt condition. The
procedure for clearing an interrupt condition is specific to the peripheral.

f For details, refer to the relevant chapter in Volume 5: Embedded Peripherals of the
Quartus II Handbook.

When the ISR has finished servicing the interrupt, it must return to the HAL
exception handler.

1 If you write your ISR in assembly language, use ret to return. The HAL exception
handler issues an eret after restoring the application context.

Restricted Environment
ISRs run in a restricted environment. A large number of the HAL API calls are not
available from ISRs. For example, accesses to the HAL file system are not permitted.
As a general rule, when writing your own ISR, never include function calls that can
block waiting for an interrupt.

f The HAL API Reference chapter of the Nios II Software Developer’s Handbook identifies
those API functions that are not available to ISRs.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 8: Exception Handling 8–5
ISRs
Be careful when calling ANSI C standard library functions inside of an ISR. Avoid
using the C standard library I/O API, because calling these functions can result in
deadlock within the system, that is, the system can become permanently blocked in
the ISR.

In particular, do not call printf() from within an ISR unless you are certain that
stdout is mapped to a non-interrupt-based device driver. Otherwise, printf() can
deadlock the system, waiting for an interrupt that never occurs because interrupts are
disabled.

Registering an ISR
Before the software can use an ISR, you must register it by calling
alt_irq_register(). The prototype for alt_irq_register() is:

int alt_irq_register (
alt_u32 id,
void* context,
void (*isr)(void*, alt_u32));

The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in system.h.
Interrupt priority corresponds inversely to the IRQ number. Therefore, IRQ0
represents the highest priority interrupt and IRQ31 is the lowest.

■ context is a pointer used to pass context-specific information to the ISR, and can
point to any ISR-specific information. The context value is opaque to the HAL; it is
provided entirely for the benefit of the user-defined ISR.

■ isr is a pointer to the function that is called in response to IRQ number id. The
two input arguments provided to this function are the context pointer and id.
Registering a null pointer for isr results in the interrupt being disabled.

The HAL registers the ISR by the storing the function pointer, isr, in a lookup table.
The return code from alt_irq_register() is zero if the function succeeded, and
nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II interrupt (as defined
by id) is enabled on return from alt_irq_register().

1 Hardware-specific initialization might also be required.

When a specific IRQ occurs, the HAL looks up the IRQ in the lookup table and
dispatches the registered ISR.

f For details about interrupt initialization specific to your peripheral, refer to the
relevant chapter of Volume 5: Embedded Peripherals of the Quartus II Handbook. For
details about alt_irq_register(), refer to the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

8–6 Chapter 8: Exception Handling
ISRs
Enabling and Disabling ISRs
The HAL provides the functions alt_irq_disable(), alt_irq_enable(),
alt_irq_disable_all(), alt_irq_enable_all(), and alt_irq_enabled()
to allow a program to disable interrupts for certain sections of code, and reenable
them later. alt_irq_disable() and alt_irq_enable() allow you to disable
and enable individual interrupts. alt_irq_disable_all() disables all interrupts,
and returns a context value. To reenable interrupts, you call
alt_irq_enable_all() and pass in the context parameter. In this way, interrupts
are returned to their state prior to the call to alt_irq_disable_all().
alt_irq_enabled() returns non-zero if interrupts are enabled, allowing a program
to check on the status of interrupts.

1 Disable interrupts for as short a time as possible. Maximum interrupt latency
increases with the amount of time interrupts are disabled. For more information about
disabled interrupts, refer to “Keep Interrupts Enabled” on page 8–9.

f For details about these functions, refer to the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

C Example
Example 8–1 illustrates an ISR that services an interrupt from a button parallel I/O
(PIO) component. This example is based on a Nios II system with a 4-bit PIO
peripheral connected to push buttons. An IRQ is generated any time a button is
pushed. The ISR code reads the PIO peripheral’s edge-capture register and stores the
value to a global variable. The address of the global variable is passed to the ISR in the
context pointer.

Example 8–2 shows an example of the code for the main program that registers the
ISR with the HAL.

Example 8–1. An ISR to Service a Button PIO IRQ

#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

static void handle_button_interrupts(void* context, alt_u32 id)
{

/* cast the context pointer to an integer pointer. */
volatile int* edge_capture_ptr = (volatile int*) context;

/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* reset interrupt capability for the Button PIO. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

}

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 8: Exception Handling 8–7
ISR Performance Data
Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The HAL exception handler runs and dispatches the
handle_button_interrupts() ISR.

3. handle_button_interrupts() services the interrupt and returns.

4. Normal program operation continues with an updated value of edge_capture.

f Additional software examples that demonstrate implementing ISRs, such as the
count_binary example project template, are installed with the Nios II Embedded
Design Suite (EDS).

ISR Performance Data
This section provides performance data related to ISR processing on the Nios II
processor. The following three key metrics determine ISR performance:

■ Interrupt latency—The time from when an interrupt is first generated to when the
processor runs the first instruction at the exception address.

■ Interrupt response time—The time from when an interrupt is first generated to
when the processor runs the first instruction in the ISR.

■ Interrupt recovery time—The time taken from the last instruction in the ISR to
return to normal processing.

Example 8–2. Registering the Button PIO ISR with the HAL

#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...

/* Initialize the button_pio. */
static void init_button_pio()
{

/* Recast the edge_capture pointer to match the
alt_irq_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the ISR. */
alt_irq_register(BUTTON_PIO_IRQ,

edge_capture_ptr,
handle_button_interrupts);

}

© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

8–8 Chapter 8: Exception Handling
Improving ISR Performance
Because the Nios II processor is highly configurable, there is no single typical number
for each metric. This section provides data points for each of the Nios II cores under
the following assumptions:

■ All code and data is stored in on-chip memory.

■ The ISR code does not reside in the instruction cache.

■ The software under test is based on the Altera-provided HAL exception handler
system.

■ The code is compiled using compiler optimization level -O3, that is, high
optimization.

Table 8–1 lists the interrupt latency, response time, and recovery time for each Nios II
core.

The results you experience in a specific application can vary significantly based on
several factors discussed in the next section.

Improving ISR Performance
If your software uses interrupts extensively, the performance of ISRs is probably the
most critical determinant of your overall software performance. This section discusses
both hardware and software strategies to improve ISR performance.

Software Performance Improvements
In improving your ISR performance, you probably consider software changes first.
However, in some cases it might require less effort to implement hardware design
changes that increase system efficiency. For a discussion of hardware optimizations,
refer to “Hardware Performance Improvements” on page 8–11.

The following sections describe changes you can make in the software design to
improve ISR performance.

Execute Time-Intensive Algorithms in the Application Context
ISRs provide rapid, low latency response to changes in the state of hardware. They do
the minimum necessary work to clear the interrupt condition and then return. If your
ISR performs lengthy, noncritical processing, it interferes with more critical tasks in
the system.

If your ISR requires lengthy processing, design your software to perform this
processing outside of the interrupt context. The ISR can use a message-passing
mechanism to notify the application code to perform the lengthy processing tasks.

Table 8–1. Interrupt Performance Data (1)

Core Latency Response Time Recovery Time

Nios II/f 10 105 62

Nios II/s 10 128 130

Nios II/e 15 485 222

Note to Table 8–1:

(1) The numbers indicate time measured in CPU clock cycles.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Exception Handling 8–9
Improving ISR Performance
Deferring a task is simple in systems based on an RTOS such as MicroC/OS-II. In this
case, you can create a thread to handle the processor-intensive operation, and the ISR
can communicate with this thread using any of the RTOS communication
mechanisms, such as event flags or message queues.

You can emulate this approach in a single-threaded HAL-based system. The main
program polls a global variable managed by the ISR to determine whether it needs to
perform the processor-intensive operation.

Implement Time-Intensive Algorithms in Hardware
Processor-intensive tasks must often transfer large amounts of data to and from
peripherals. A general-purpose CPU such as the Nios II processor is not the most
efficient way to do this. Use direct memory access (DMA) hardware if it is available.

f For information about programming with DMA hardware, refer to “Using DMA
Devices” in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Software Developer’s Handbook.

Increase Buffer Size
If you are using DMA to transfer large data buffers, the buffer size can affect
performance. Small buffers imply frequent IRQs, which lead to high overhead.

Increase the size of the transaction data buffer(s).

Use Double Buffering
Using DMA to transfer large data buffers might not provide a large performance
increase if the Nios II processor must wait for DMA transactions to complete before it
can perform the next task.

Double buffering allows the Nios II processor to process one data buffer while the
hardware is transferring data to or from another.

Keep Interrupts Enabled
When interrupts are disabled, the Nios II processor cannot respond quickly to
hardware events. Buffers and queues can fill or overflow. Even in the absence of
overflow, maximum interrupt processing time can increase after interrupts are
disabled, because the ISRs must process data backlogs.

Disable interrupts as infrequently as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_irq_disable() and
alt_irq_enable() to enable and disable individual IRQs.

To protect shared data structures, use RTOS structures such as semaphores.

Disable all interrupts only during critical system operations. In the code where
interrupts are disabled, perform only the bare minimum of critical operations, and
reenable interrupts immediately.

Use Fast Memory
ISR performance depends on memory speed.

For best performance, place the ISRs and the stack in the fastest available memory:
preferably tightly-coupled memory (if available), or on-chip memory.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

8–10 Chapter 8: Exception Handling
Improving ISR Performance
If it is not possible to place the main stack in fast memory, you can use a separate
exception stack, mapped to a fast memory section. However, the separate exception
stack entails some additional context switch overhead, so use it only if you are able to
place it in significantly faster memory. You can specify a separate exception stack as a
property of the BSP.

f For more information about mapping memory, refer to “Memory Usage” in the
Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook. For more information about tightly-coupled memory, refer to
the Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook.

Use Nested ISRs
The HAL disables interrupts when it dispatches an ISR. This means that only one ISR
can execute at any time, and ISRs are executed on a first-come first-served basis. This
reduces the system overhead associated with interrupt processing, and simplifies ISR
development. The ISR does not need to be reentrant, which means that it can freely
use and modify global and static data structures, including hardware registers.

However, first-come first-served execution means that the HAL interrupt priorities
only have an effect if two IRQs are asserted on the same application-level instruction
cycle. A low-priority interrupt occurring before a higher-priority IRQ can prevent the
higher-priority ISR from executing. This is a form of priority inversion, and it can
have a significant impact on ISR performance in systems that generate frequent
interrupts.

A software system can achieve full interrupt prioritization by using nested ISRs. With
nested ISRs, higher priority interrupts are allowed to interrupt lower-priority ISRs.

This technique can improve the interrupt latency of higher priority ISRs.

1 Nested ISRs increase the processing time for lower priority interrupts.

If your ISR is very short, it might not be worth the overhead to reenable
higher-priority interrupts. Enabling nested interrupts in a short ISR can actually
increase the interrupt latency of higher priority interrupts.

1 If you use a separate exception stack, you cannot nest interrupts. For more
information about separate exception stacks, refer to “Use Fast Memory” on page 8–9.

To implement nested interrupts, use the alt_irq_interruptible() and
alt_irq_non_interruptible() functions to bracket code in a
processor-intensive ISR. The call to alt_irq_interruptible() adjusts the
interrupt mask so that higher priority IRQs can interrupt the running ISR. When your
ISR calls alt_irq_non_interruptible(), the interrupt mask is returned to its
previous state.

1 If your ISR calls alt_irq_interruptible(), it must call
alt_irq_non_interruptible() before returning. Otherwise, the HAL exception
handler might lock up.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Exception Handling 8–11
Improving ISR Performance
Use Compiler Optimization
For the best performance both in exception context and application context, use
compiler optimization level -O3. Level -O2 also produces good results. Removing
optimization altogether significantly increases interrupt response time.

f For further information about compiler optimizations, refer to “Reducing Code
Footprint” in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Software Developer’s Handbook.

Hardware Performance Improvements
Several simple hardware changes can provide a substantial improvement in ISR
performance. These changes involve editing and regenerating the SOPC Builder
module, and recompiling the Quartus® II design.

In some cases, these changes also require changes in the software architecture or
implementation. For a discussion of these and other software optimizations, refer to
“Software Performance Improvements” on page 8–8.

The following sections describe changes you can make in the hardware design to
improve ISR performance.

Add Fast Memory
Increase the amount of fast on-chip memory available for data buffers. Ideally,
implement tightly-coupled memory that the software can use for buffers.

f For further information about tightly-coupled memory, refer to the Cache and Tightly-
Coupled Memory chapter of the Nios II Software Developer’s Handbook, or to the Using
Nios II Tightly Coupled Memory Tutorial.

Add a DMA Controller
A DMA controller performs bulk data transfers, reading data from a source address
range and writing the data to a different address range. Add DMA controllers to
move large data buffers. This allows the Nios II processor to carry out other tasks
while data buffers are being transferred.

f For information about DMA controllers, refer to the DMA Controller Core and
Scatter-Gather DMA Controller Core chapters in Volume 5: Embedded Peripherals of the
Quartus II Handbook.

Place the Exception Handler Address in Fast Memory
For the fastest execution of exception code, place the exception address in a fast
memory device. For example, an on-chip RAM with zero waitstates is preferable to a
slow SDRAM. For best performance, store exception handling code and data in
tightly-coupled memory. The Nios II EDS includes example designs that demonstrate
the use of tightly-coupled memory for ISRs.

Use a Fast Nios II Core
For processing in both the interrupt context and the application context, the Nios II/f
core is the fastest, and the Nios II/e core (designed for small size) is the slowest.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf

8–12 Chapter 8: Exception Handling
Debugging ISRs
Select Interrupt Priorities
When selecting the IRQ for each peripheral, remember that the HAL hardware
interrupt handler treats IRQ0 as the highest priority. Assign each peripheral’s
interrupt priority based on its need for fast servicing in the overall system. Avoid
assigning multiple peripherals to the same IRQ.

Use the Interrupt Vector Custom Instruction
The Nios II processor core offers an interrupt vector custom instruction that
accelerates interrupt vector dispatch in the HAL. You can choose to include this
custom instruction to improve your program’s interrupt response time.

When the interrupt vector custom instruction is present in the Nios II processor, the
HAL source detects it at compile time and generates code using the custom
instruction.

f For further information about the interrupt vector custom instruction, refer to
“Interrupt Vector Custom Instruction” in the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

Debugging ISRs
You can debug an ISR with the Nios II IDE by setting breakpoints in the ISR. The
debugger completely halts the processor on reaching a breakpoint. In the meantime,
however, the other hardware in your system continues to operate. Therefore, it is
inevitable that other IRQs are ignored while the processor is halted. You can use the
debugger to step through the ISR code, but the status of other interrupt-driven device
drivers is generally invalid by the time you return the processor to normal execution.
You must reset the processor to return the system to a known state.

The ipending register (ctl4) is masked to all zeros during single-stepping. This
masking prevents the processor from servicing IRQs that are asserted while you
single-step through code. As a result, if you try to single-step through a part of the
exception handler code (for example alt_irq_entry() or alt_irq_handler())
that reads the ipending register, the code does not detect any pending IRQs. This
issue does not affect debugging software exceptions. You can set breakpoints in your
ISR code (and single-step through it), because the exception handler has already used
ipending to determine which IRQ caused the exception.

Summary of Guidelines for Writing ISRs
This section summarizes guidelines for writing ISRs for the HAL framework:

■ Write your ISR function to match the prototype: void isr (void* context,
alt_u32 id).

■ Register your ISR using the alt_irq_register() function provided by the
HAL API.

■ Do not use the C standard library I/O functions, such as printf(), inside of an
ISR.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Chapter 8: Exception Handling 8–13
HAL Exception Handler Implementation
HAL Exception Handler Implementation
This section describes the HAL exception handler implementation. This is one of
many possible implementations of an exception handler for the Nios II processor.
Some features of the HAL exception handler are constrained by the Nios II hardware,
while others provide generally useful services.

You can take advantage of the HAL exception services without a complete
understanding of the HAL implementation. For details about how to install ISRs
using the HAL API, refer to “ISRs” on page 8–3.

Exception Handler Structure
The exception handling system consists of the following components:

■ The top-level exception handler

■ The hardware interrupt handler

■ The software exception handler

■ An ISR for each peripheral that generates interrupts

When the Nios II processor generates an exception, the top-level exception handler
receives control. The top-level exception handler passes control to either the hardware
interrupt handler or the software exception handler. The hardware interrupt handler
passes control to one or more ISRs.

Each time an exception occurs, the exception handler services either a software
exception or hardware interrupts, with hardware interrupts having a higher priority.
The HAL does not support nested exceptions, but can handle multiple hardware
interrupts per context switch. For details, refer to “Hardware Interrupt Handler” on
page 8–15.

Top-Level Exception Handler
The top-level exception handler provided with the HAL is located at the Nios II
processor's exception address. When an exception occurs and control transfers to the
exception handler, it does the following:

1. Creates the separate exception stack (if specified)

2. Stores register values onto the stack

3. Determines the type of exception, and passes control to the correct handler

Figure 8–1 shows the algorithm that the HAL top-level exception handler uses to
distinguish between hardware interrupts and software exceptions.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

8–14 Chapter 8: Exception Handling
HAL Exception Handler Implementation
The top-level exception handler looks at the estatus register to determine the
interrupt enable status. If the EPIE bit is set, hardware interrupts were enabled at the
time the exception happened. If so, the exception handler looks at the IRQ bits in
ipending. If any IRQs are asserted, the exception handler calls the hardware
interrupt handler.

If hardware interrupts are not enabled at the time of the exception, it is not necessary
to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is a software
exception. In this case, the top-level exception handler calls the software exception
handler.

All hardware interrupts are higher priority than software exceptions.

f For details about the Nios II processor estatus and ipending registers, refer to the
Programming Model chapter of the Nios II Processor Reference Handbook.

After returning from the hardware interrupt or software exception handler, the
top-level exception handler performs the following tasks:

1. Restores the stack pointer, if a separate exception stack is used

2. Restores the registers from the stack

Figure 8–1. HAL Top-Level Exception Handler

Hardware
interrupts
enabled?

Hardware
interrupts
pending?

Handle
software exception

No

Exit

Enter

NoYes

Yes

Restore context

Save context

Handle
hardware interrupts

31
IS

R

IS
R

10
IS

R

Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Chapter 8: Exception Handling 8–15
HAL Exception Handler Implementation
3. Exits by issuing an eret (exception return) instruction

Hardware Interrupt Handler
The Nios II processor supports 32 hardware interrupts. In the HAL exception handler,
hardware interrupt 0 has the highest priority, and 31 the lowest. This prioritization is a
feature of the HAL exception handler, and is not inherent in the Nios II exception and
interrupt controller.

The hardware interrupt handler calls the user-registered ISRs. It goes through the
IRQs in ipending starting at 0, and finds the first (highest priority) active IRQ. Then
it calls the corresponding registered ISR. After this ISR executes, the exception
handler begins scanning the IRQs again, starting at IRQ0. In this way, higher priority
exceptions are always processed before lower-priority exceptions. When all IRQs are
clear, the hardware interrupt handler returns to the top level. Figure 8–2 shows a flow
diagram of the HAL hardware interrupt handler.

When the interrupt vector custom instruction is present in the Nios II processor, the
HAL source detects it at compile time and generates code using the custom
instruction. For further information, refer to “Use the Interrupt Vector Custom
Instruction” on page 8–12.

Software Exception Handler
Software exceptions can include unimplemented instructions, traps, and
miscellaneous exceptions.

Software exception handling depends on options selected in the BSP. If you have
enabled unimplemented instruction emulation, the exception handler first checks to
see if an unimplemented instruction caused the exception. If so, it emulates the
instruction. Otherwise, it handles traps and miscellaneous exceptions.

Figure 8–2. HAL Hardware Interrupt Handler

i = O

IRQ active?

NoYes

No

Exit

i = i + 1

i = = 32?

Enter

Call ISR i i
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

8–16 Chapter 8: Exception Handling
HAL Exception Handler Implementation
Unimplemented Instructions
You can include a handler to emulate unimplemented instructions. The Nios II
processor architecture defines the following implementation-dependent instructions:

■ mul

■ muli

■ mulxss

■ mulxsu

■ mulxuu

■ div

■ divu

f For details about unimplemented instructions, refer to “Unimplemented Instructions”
in the Processor Architecture chapter of the Nios II Processor Reference Handbook.

1 Unimplemented instructions are different from invalid instructions, which are
described in “Invalid Instructions” on page 8–18.

When to Use the Unimplemented Instruction Handler

You do not normally need the unimplemented instruction handler, because the HAL
includes software emulation for unimplemented instructions from its run-time
libraries if you are compiling for a Nios II processor that does not support the
instructions.

You might need the unimplemented instruction handler under the following
circumstances:

■ You are running a Nios II program on an implementation of the Nios II processor
other than the one you compiled for. The best solution is to build your program for
the correct Nios II processor implementation. Only if this is not possible should
you resort to the unimplemented instruction handler.

■ You have assembly language code that uses an implementation-dependent
instruction.

Figure 8–3 shows a flowchart of the HAL software exception handler, including the
optional instruction emulation logic. If instruction emulation is not enabled, this logic
is omitted.

If unimplemented instruction emulation is disabled, but the processor encounters an
unimplemented instruction, the exception handler treats the resulting exception as a
miscellaneous exception. Miscellaneous exceptions are described in “Miscellaneous
Exceptions” on page 8–18.

Using the Unimplemented Instruction Handler

To include the unimplemented instruction handler, turn on the
hal.enable_mul_div_emulation BSP property. The emulation routines occupy
less than ¾ KBytes of memory.

1 An exception handler must never execute an unimplemented instruction. The HAL
exception handling system does not support nested software exceptions.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

Chapter 8: Exception Handling 8–17
HAL Exception Handler Implementation
Instruction-Related Exceptions
If the cause of the software exception is not an unimplemented instruction, the HAL
software exception handler checks for a registered instruction-related exception
handler. If no instruction-related exception handler is registered, the exception is
handled as described in “Software Trap Handling”. If a handler is registered, the HAL
software exception handler calls it, then restores context and returns. Refer to “The
Instruction-Related Exception Handler” for a description of the instruction-related
exception handler and how to register it.

Figure 8–3. HAL Software Exception Handler

Exception at
unimplemented

instruction?

Exception
at trap

instruction

Yes

Enter

Exit

No

Emulate
unimplemented

instruction

Optional
Unimplemented
Instruction
Logic

No

Infinite
loop

Break

Optional
trap logic

Yes

Instruction-
related

exception handler
registered?

No Yes

Instruction-
related

exception
handler
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

8–18 Chapter 8: Exception Handling
HAL Exception Handler Implementation
Software Trap Handling
If no instruction-related exception handler is registered, the HAL software exception
handler checks for a trap instruction. If the exception is caused by a trap
instruction, the exception handler executes a break instruction. The break
instruction transfers control to a hardware debug core, if one is available. If the
exception is not caused by a trap instruction, it is treated as a miscellaneous
exception.

Miscellaneous Exceptions
If a debug core is present in the Nios II processor, traps and miscellaneous exceptions
are handled identically, by executing a break instruction. Figure 8–3 shows a
flowchart of the HAL software exception handler, including the optional trap logic. If
a debug core is present in the Nios II processor, the trap logic is omitted.

If the exception is not caused by an unimplemented instruction or a trap, it is a
miscellaneous exception. In a debugging environment, the processor executes a
break, allowing the debugger to take control. In a non-debugging environment, the
processor enters an infinite loop.

f For details about the Nios II processor break instruction, refer to the Programming
Model and Instruction Set Reference chapters of the Nios II Processor Reference Handbook.

Miscellaneous exceptions can occur for these reasons:

■ Advanced exceptions, the memory protection unit (MPU), or the memory
management unit (MMU) are implemented in the Nios II processor core. To
handle advanced and MPU exceptions, refer to “The Instruction-Related
Exception Handler”. To handle MMU exceptions, you need to implement a
full-featured operating system, as mentioned in the Programming Model chapter of
the Nios II Processor Reference Handbook.

■ You need to include the unimplemented instruction handler, discussed in
“Unimplemented Instructions” on page 8–16.

■ A peripheral is generating spurious interrupts. This is a symptom of a serious
hardware problem. A peripheral might generate spurious hardware interrupts if it
deasserts its interrupt output before an ISR has explicitly serviced it.

Invalid Instructions
An invalid instruction word contains invalid codes in the OP or OPX field. For normal
Nios II core implementations, the result of executing an invalid instruction is
undefined; processor behavior is dependent on the Nios II core.

Therefore, the exception handler cannot detect or respond to an invalid instruction.

1 Invalid instructions are different from unimplemented instructions, which are
described in “Unimplemented Instructions” on page 8–16.

f For more information, refer to the Nios II Core Implementation Details chapter of the
Nios II Processor Reference Handbook.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Chapter 8: Exception Handling 8–19
The Instruction-Related Exception Handler
The Instruction-Related Exception Handler
The software-related exception handler lets you handle software-related exceptions,
such as the advanced exceptions. The software-related exception handler is a custom
handler. Your software registers the software-related exception handler with the HAL
at startup time.

1 The hal.enable_instruction_related_exceptions_api setting must be
enabled in the BSP in order for you to register an instruction-related exception
handler.

f For further information about the Nios II software-related exceptions, refer to the
Programming Model chapter of the Nios II Processor Reference Handbook. For details
about enabling instruction-related exception handlers, refer to “Settings” in the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

When you register an exception handler, it takes the place of the break/optional trap
logic.

When you remove the instruction-related exception handler, the HAL restores the
default break/optional trap logic.

Writing an Instruction-Related Exception Handler
The prototype for an instruction-related exception handler is as follows:

alt_exception_result handler (
alt_exception_cause cause,
alt_u32 addr,
alt_u32 bad_addr);

The exception handler’s return value is a flag requesting that the HAL either
re-execute the instruction, or skip it.

The HAL exception handler calls the instruction-related exception handler with the
following arguments:

■ cause—A value representing the exception type, as shown in Table 8–2

■ addr—Instruction address at which exception occurred

■ bad_addr—Bad address register (if implemented)

Include the following header file in your instruction-related exception handler code:

#include “sys/alt_exceptions.h”

alt_exceptions.h provides type macro definitions required to interface your exception
handler to the HAL, including the cause codes shown in Table 8–2.

The API function alt_exception_cause_generated_bad_addr() is provided
by the HAL, for the use of the instruction-related exception handler. This function
parses the cause argument and determines if bad_addr contains the
exception-causing address.

f For further information about Nios II processor exception causes, refer to “Exception
Processing” in the Programming Model chapter of the Nios II Processor Reference
Handbook.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

8–20 Chapter 8: Exception Handling
The Instruction-Related Exception Handler
If there is an instruction-related exception handler, it is called at the end of the
exception filter (if the HAL exception handler has not recognized a hardware
interrupt, unimplemented instruction or trap). It takes the place of the break or
infinite loop. Therefore, to support debugging, execute a break on a trap instruction.

1 It is possible for an instruction-related exception to occur during execution of an ISR.

Registering an Instruction-Related Exception Handler
The HAL API function alt_instruction_exception_register() registers a
single exception handler.

The function prototype is as follows:

alt_instruction_exception_register (
alt_exception_result (*handler)

(alt_exception_cause, alt_u32, alt_u32));

The handler argument is a pointer to the instruction-related exception handler.

Table 8–2. Nios II Exception Cause Codes

Exception Cause Code Cause Symbol (1)

Reset 0 NIOS2_EXCEPTION_RESET

Processor-only Reset Request 1 NIOS2_EXCEPTION_CPU_ONLY_RESET_REQUEST

Interrupt 2 NIOS2_EXCEPTION_INTERRUPT

Trap Instruction 3 NIOS2_EXCEPTION_TRAP_INST

Unimplemented Instruction 4 NIOS2_EXCEPTION_UNIMPLEMENTED_INST

Illegal Instruction 5 NIOS2_EXCEPTION_ILLEGAL_INST

Misaligned Data Address 6 NIOS2_EXCEPTION_MISALIGNED_DATA_ADDR

Misaligned Destination Address 7 NIOS2_EXCEPTION_MISALIGNED_TARGET_PC

Division Error 8 NIOS2_EXCEPTION_DIVISION_ERROR

Supervisor-only Instruction Address 9 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST_ADDR

Supervisor-only Instruction 10 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST

Supervisor-only Data Address 11 NIOS2_EXCEPTION_SUPERVISOR_ONLY_DATA_ADDR

Translation lookaside buffer (TLB)
Miss

12 NIOS2_EXCEPTION_TLB_MISS

TLB Permission Violation (execute) 13 NIOS2_EXCEPTION_TLB_EXECUTE_PERM_VIOLATION

TLB Permission Violation (read) 14 NIOS2_EXCEPTION_TLB_READ_PERM_VIOLATION

TLB Permission Violation (write) 15 NIOS2_EXCEPTION_TLB_WRITE_PERM_VIOLATION

MPU Region Violation (instruction) 16 NIOS2_EXCEPTION_MPU_INST_REGION_VIOLATION

MPU Region Violation (data) 17 NIOS2_EXCEPTION_MPU_DATA_REGION_VIOLATION

Cause unknown (2) -1 NIOS2_EXCEPTION_CAUSE_NOT_PRESENT

Notes to Table 8–2:

(1) Cause symbols are defined in sys/alt_exceptions.h.
(2) This value is passed to the exception handler if the cause argument if the cause is not known; for example, if the cause register not

implemented in the Nios II processor core.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Exception Handling 8–21
Exception Handling in an IDE Project
To use alt_instruction_exception_register(), include the following header
file:

#include "sys/alt_exceptions.h"

1 The hal.enable_instruction_related_exceptions_api setting must be
enabled in the BSP in order for you to register an instruction-related exception
handler.

f For details, refer to “Settings” in the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

1 Register the instruction-related exception handler as early as possible in function
main(). This allows you to handle abnormal condition during startup. You can
register an exception handler from the alt_main() function.

f For more information about alt_main(), refer to “Boot Sequence and Entry Point”
in the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook.

Removing an Instruction-Related Exception Handler
To remove a registered instruction-related exception handler, your C code must call
the alt_instruction_exception_register() function, as follows:

alt_instruction_exception_register (null, null);

When the HAL removes the instruction-related exception handler, it restores the
default break/optional trap logic.

Exception Handling in an IDE Project
Exception handling in Nios II IDE projects is largely the same as in software build
tools projects. This section discusses the differences.

Software Trap Handling
If your software is compiled for release, the exception handler makes a distinction
between traps and other exceptions. If your software is compiled for debug, traps and
other exceptions are handled identically, by executing a break instruction. Figure 8–3
on page 8–17 shows a flowchart of the HAL software exception handler, including the
optional trap logic. If your software is compiled for debug, the trap logic is omitted.

1 The instruction-related exception handler is unavailable in IDE projects. Disregard the
portion of Figure 8–3 relating to the instruction-related exception handler.

Advanced Exceptions
Advanced exception support, including the instruction-related exception handler, is
not available in the Nios II IDE development flow.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

8–22 Chapter 8: Exception Handling
Referenced Documents
Using the Unimplemented Instruction Handler
To include the unimplemented instruction handler in an IDE project, turn on Emulate
multiply and divide instructions on the System properties page of the Nios II IDE.

1 You do not normally need the unimplemented instruction handler, because the HAL
includes software emulation for unimplemented instructions from its run-time
libraries if you are compiling for a Nios II processor that does not support the
instructions.

For further information about the unimplemented instruction handler, refer to
“Unimplemented Instructions” on page 8–16.

Referenced Documents
This chapter references the following documents:

■ Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s
Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

■ Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook

■ Instruction Set Reference chapter of the Nios II Processor Reference Handbook

■ Volume 5: Embedded Peripherals of the Quartus II Handbook

■ Using Nios II Tightly Coupled Memory Tutorial

Document Revision History
Table 8–3 shows the revision history for this document.
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/quartus2/lit-qts-peripherals.jsp
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf

Chapter 8: Exception Handling 8–23
Document Revision History
Table 8–3. Document Revision History

Date &
Document

Version Changes Made Summary of Changes

March 2009

v9.0.0

■ Reorganized and updated information and terminology to clarify role
of Nios II software build tools.

■ Corrected minor typographical errors.

May 2008

v8.0.0

No change from previous release.

October 2007

v7.2.0

No change from previous release.

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007

v7.0.0

No change from previous release.

November 2006

v6.1.0

■ Describes support for the interrupt vector custom instruction. Interrupt vector custom
instruction added.

May 2006

v6.0.0

■ Corrected error in alt_irq_enable_all() usage

■ Added illustrations

■ Revised text on optimizing ISRs

■ Expanded and revised text discussing HAL exception handler code
structure.

October 2005

v5.1.0

■ Updated references to HAL exception-handler assembly source files
in section “HAL Exception Handler Files”.

■ Added description of alt_irq_disable() and
alt_irq_enable() in section “ISRs”.

May 2005

v5.0.0

Added tightly-coupled memory information.

December 2004

v1.2

Corrected the “Registering the Button PIO ISR with the HAL” example.

September
2004

v1.1

■ Changed examples.

■ Added ISR performance data.

May 2004

v1.0

Initial Release.
© March 2009 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

8–24 Chapter 8: Exception Handling
Document Revision History
Nios II Software Developer’s Handbook © March 2009 Altera Corporation
Preliminary

	8. Exception Handling
	Introduction
	Nios II Exceptions Overview
	Exception Handling Concepts
	How the Hardware Works

	ISRs
	HAL API for ISRs
	Writing an ISR
	Restricted Environment

	Registering an ISR
	Enabling and Disabling ISRs
	C Example

	ISR Performance Data
	Improving ISR Performance
	Software Performance Improvements
	Execute Time-Intensive Algorithms in the Application Context
	Implement Time-Intensive Algorithms in Hardware
	Increase Buffer Size
	Use Double Buffering
	Keep Interrupts Enabled
	Use Fast Memory
	Use Nested ISRs
	Use Compiler Optimization

	Hardware Performance Improvements
	Add Fast Memory
	Add a DMA Controller
	Place the Exception Handler Address in Fast Memory
	Use a Fast Nios II Core
	Select Interrupt Priorities
	Use the Interrupt Vector Custom Instruction

	Debugging ISRs
	Summary of Guidelines for Writing ISRs
	HAL Exception Handler Implementation
	Exception Handler Structure
	Top-Level Exception Handler
	Hardware Interrupt Handler
	Software Exception Handler
	Unimplemented Instructions
	When to Use the Unimplemented Instruction Handler
	Using the Unimplemented Instruction Handler

	Instruction-Related Exceptions
	Software Trap Handling
	Miscellaneous Exceptions

	Invalid Instructions

	The Instruction-Related Exception Handler
	Writing an Instruction-Related Exception Handler
	Registering an Instruction-Related Exception Handler
	Removing an Instruction-Related Exception Handler

	Exception Handling in an IDE Project
	Software Trap Handling
	Advanced Exceptions
	Using the Unimplemented Instruction Handler

	Referenced Documents
	Document Revision History

