
Preliminary Information

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Nios II Custom Instruction
User Guide

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation

UG-N2CSTNST-1.4

Altera Corporation
Contents
About this User Guide .. 3
Revision History .. 3
How to Contact Altera .. 3
Typographic Conventions .. 2–4

Chapter 1. Nios II Custom Instruction Overview
Introduction .. 1–1
Custom Instruction Overview ... 1–2

Implementing Custom Instruction Hardware ... 1–2
Implementing Custom Instruction Software ... 1–3

Custom Instruction Architectural Types .. 1–4
Combinatorial Custom Instruction Architecture ... 1–5

Combinatorial Port Operation .. 1–6
Multi-Cycle Custom Instruction Architecture ... 1–7

Multi-Cycle Port Operation ... 1–8
Extended Custom Instruction Architecture ... 1–9

Extended Custom Instruction Port Operation ... 1–10
Internal Register File Custom Instruction Architecture ... 1–11

Internal Register File Custom Instruction Port Operation ... 1–12
External Interface Custom Instruction Architecture ... 1–12

Chapter 2. Software Interface
Introduction .. 2–1
Custom Instruction Examples .. 2–1
Built-In Functions and User-Defined Macros .. 2–2
Custom Instruction Assembly Software Interface .. 2–4

Chapter 3. Implementing a Nios II Custom Instruction
Introduction .. 3–1
Implementing Custom Instruction Hardware in SOPC Builder .. 3–1

Open the Component Editor .. 3–1
Add the Top-Level HDL File .. 3–3
Import Simulation Files ... 3–4
Configure the Custom Instruction Ports ... 3–4
Set Up Additional Interfaces .. 3–5
Set the Component Group Name .. 3–6
Save the Custom Instruction ... 3–7
Generate the SOPC Builder System and Compile in Quartus II Software 3–9

Accessing the Custom Instruction from Software .. 3–9
 1
Nios II Custom Instruction User Guide

Nios II Custom Instruction User Guide
Appendix A. Custom Instruction Templates
Overview .. A–1
VHDL Template .. A–1
Verilog HDL Template .. A–2

Appendix B. Custom Instruction Built-In Functions
Overview ... B–1
Built-In Functions Returning void ... B–1
Built-in Functions Returning int ... B–1
Built-in Functions Returning float ... B–2
Built-in Functions Returning a Pointer .. B–2

Appendix C. Porting First- Generation Nios Custom Instructions to Nios II Systems
Overview .. C–1
Hardware Porting Considerations ... C–1
Software Porting Considerations ... C–1
2 Altera Corporation
Nios II Custom Instruction User Guide

Altera Corporation
About this User Guide
Revision History The table below displays the revision history for chapters in this User
Guide.

How to Contact
Altera

For the most up-to-date information about Altera® products, refer to the
following table.

Nios II Custom Instruction User Guide Revision History

Chapter Date Version Changes Made

2 May 2007 1.4 Add title and core version number to page footers

All May 2007 1.3 Minor corrections to terminology and usage.

1 May 2007 1.3 Describe new component editor import flow.

3 May 2007 1.3 Remove tutorial design

All December 2004 1.2 Updates for the Nios® II version 1.1 release.

All September 2004 1.1 Updates for the Nios II version 1.01 release.

All May 2004 1.0 First release of custom instruction user guide for the Nios II
processor.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature/

Altera literature services literature@altera.com

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.
 3

http://www.altera.com/mysupport/
www.altera.com/training/
mailto:custrain@altera.com
www.altera.com/literature/
mailto:literature@altera.com
ftp.altera.com

How to Contact Altera Nios II Custom Instruction User Guide
Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
4 Altera Corporation

Altera Corporation 7.1
May 2007
1. Nios II Custom Instruction
Overview
Introduction With the Altera Nios II embedded processor, you as the system designer
can accelerate time-critical software algorithms by adding custom
instructions to the Nios II instruction set. With custom instructions, you
can reduce a complex sequence of standard instructions to a single
instruction implemented in hardware. You can use this feature for a
variety of applications, for example, to optimize software inner loops for
digital signal processing (DSP), packet header processing, and
computation-intensive applications. The Nios II configuration wizard,
part of the Quartus® II software’s SOPC Builder, provides a graphical
user interface (GUI) used to add up to 256 custom instructions to the
Nios II processor.

The custom instruction logic connects directly to the Nios II arithmetic
logic unit (ALU) as shown in Figure 1–1.

Figure 1–1. Custom Instruction Logic Connects to the Nios II ALU

Nios II Embedded Processor

+
-

&

<<
>>

Result

A
Nios II
ALU

B

Custom
Logic
 Nios II Processor v. 7.1 1–1

Custom Instruction Overview
This chapter includes the following information:

■ Description of the Nios II custom instruction feature
■ Requirements for implementing a custom instruction in hardware

and software
■ Definition of custom instruction architectural types

For information regarding the custom instruction software interface, refer
to Chapter 2, Software Interface. For step-by-step instructions for
implementing a custom instruction, see Chapter 3, Implementing a
Nios II Custom Instruction.

Custom
Instruction
Overview

With Nios II custom instructions, you can take full advantage of the
flexibility of FPGAs to meet system performance requirements. Custom
instructions allow you to add custom functionality to the Nios II
processor ALU.

Nios II custom instructions are custom logic blocks adjacent to the ALU
in the processor’s data path. Custom instructions give you the ability to
tailor the Nios II processor core to meet the needs of a particular
application. You have the ability to accelerate time critical software
algorithms by converting them to custom hardware logic blocks. Because
it is easy to alter the design of the FPGA-based Nios II processor, custom
instructions provide an easy way to experiment with hardware/software
tradeoffs at any point in the design process.

Implementing Custom Instruction Hardware

Figure 1–2 is a hardware block diagram of a Nios II custom instruction.
1–2 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
Figure 1–2. Hardware Block Diagram of a Nios II Custom Instruction

The basic operation of Nios II custom instruction logic is to receive input
on the dataa and/or datab port, and drive out the result on its result
port. You generate the custom instruction logic that produces the results.

The Nios II processor supports different architectural types of custom
instructions. Figure 1–2 lists the additional ports that accommodate
different architectural types. Only the ports used for the specific custom
instruction implementation are required.

Figure 1–2 also shows an optional interface to external logic. The interface
to external logic allows you to include a custom interface to system
resources outside of the Nios II processor data path.

Implementing Custom Instruction Software

The Nios II custom instruction software interface is simple and abstracts
the details of the custom instruction from the programmer. For each
custom instruction, the Nios II integrated development environment
(IDE) generates a macro in the system header file, system.h. You can call
the macro from C or C++ application code as a normal function call and

Combinatorial

Optional interface to external
memory, FIFO, or other logic

Multi-cycle

result

Extended

Internal
Register File

[31..0]

done

dataa[31..0]

datab[31..0]

clk

clk_en

reset

start

n[7..0]

a[4..0]
readra

b[4..0]
readrb

c[4..0]
writerc

Combinatorial

Custom
Logic
Altera Corporation Nios II Processor v. 7.1 1–3
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
you do not need to program assembly to access custom instructions.
Software can also invoke custom instructions in Nios II processor
assembly language.

f For more information, refer to Chapter 2, Software Interface.

Custom
Instruction
Architectural
Types

There are different custom instruction architectures available to suit the
application’s requirements. The architectures range from a simple, single-
cycle combinatorial architecture to an extended variable-length, multi-
cycle custom instruction architecture. The chosen architecture determines
what the hardware interface looks like.

Table 1–1 shows custom instruction architectural types, application, and
the associated hardware ports.

Table 1–1. Custom Instruction Architectural Types, Application and Hardware Ports

Architectural Type Application Hardware Ports

Combinatorial Single clock cycle custom logic
blocks

● dataa[31..0]
● datab[31..0]
● result[31..0]

Multi-cycle Multi clock cycle custom logic block
of fixed or variable durations

● dataa[31..0]
● datab[31..0]
● result[31..0]
● clk
● clk_en
● start
● reset
● done

Extended Custom logic blocks that are
capable of performing multiple
operations

● dataa[31..0]
● datab[31..0]
● result[31..0]
● clk
● clk_en
● start
● reset
● done
● n[7..0]
1–4 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
This section discusses the basic functionality and hardware interface of
each custom instruction architecture type listed in Table 1–1.

Combinatorial Custom Instruction Architecture

Combinatorial custom instruction architecture consists of a logic block
that is able to complete in a single clock cycle.

Figure 1–3 shows a block diagram of a combinatorial custom instruction
architecture.

Figure 1–3. Combinatorial Custom Instruction Architecture

The Figure 1–3 combinatorial custom instruction diagram uses the dataa
and datab ports as inputs and drives the results on the result port.
Because the logic is able to complete in a single clock cycle, control ports
are not needed.

Internal Register File Custom logic blocks that access
internal register files for input and/or
output

● dataa[31..0]
● datab[31..0]
● result[31..0]
● clk
● clk_en
● start
● reset
● done
● n[7..0]
● a[4..0]
● readra
● b[4..0]
● readrb
● c[4..0]
● writerc

External Interface Custom logic blocks that interface to
logic outside of the Nios II
processor’s data path

Standard custom instruction ports, plus user-
defined interface to external logic.

Table 1–1. Custom Instruction Architectural Types, Application and Hardware Ports

Architectural Type Application Hardware Ports

dataa[31..0]

datab[31..0]
Combinatorial result[31..0]
Altera Corporation Nios II Processor v. 7.1 1–5
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
Table 1–2 lists the combinatorial custom instruction ports.

The only required port for combinatorial custom instructions is the
result port. The dataa and datab ports are optional. Include them
only if the custom instruction functionality requires input operands. If the
custom instruction requires only a single input port, use dataa.

Combinatorial Port Operation

This section describes the combinatorial custom instruction hardware
port operation. Figure 1–4 shows the combinatorial custom instruction
hardware port timing diagram.

In Figure 1–4, the processor presents the input data on the dataa and
datab ports on the rising edge of the processor clock. The processor
reads the result port on the rising edge of the following processor clock.

The Nios II processor issues a combinatorial custom instruction
speculatively; that is, it optimizes execution by issuing the instruction
before knowing whether it is necessary, and ignores the result if it is not
required. Therefore, a combinatorial custom instruction must not have
have side effects. In particular, a combinatorial custom instruction cannot
have an external interface.

You can further optimize combinatorial custom instructions by
implementing the extended custom instruction architecture. Refer to
“Extended Custom Instruction Architecture” on page 1–9.

Table 1–2. Combinatorial Custom Instruction Ports

 Port Name Direction Required Purpose

dataa[31..0] Input No Input operand to custom
instruction

datab[31..0] Input No Input operand to custom
instruction

result[31..0] Output Yes Result from custom
instruction
1–6 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
Figure 1–4. Combinatorial Custom Instruction Port Timing Diagram

Multi-Cycle Custom Instruction Architecture

Multi-cycle, or sequential, custom instructions consist of a logic block that
requires two or more clock cycles to complete an operation. Additional
control ports are required for multi-cycle custom instructions. See
Table 1–3.

Figure 1–5 shows the multi-cycle custom instruction block diagram.

Figure 1–5. Multi-Cycle Custom Instruction Block Diagram

Multi-cycle custom instruction can complete in either a fixed or variable
number of clock cycles.

■ Fixed length: You specify the required number of clock cycles during
system generation

■ Variable length: The start and done ports are used in a
handshaking scheme to determine when the custom instruction
execution is complete.

dataa[31..0]
datab[31..0]

clk
clk_en

reset
start

Optional Interface

done

result[31..0]
Altera Corporation Nios II Processor v. 7.1 1–7
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
Table 1–3 lists multi-cycle custom instruction ports.

As indicated in Table 1–3, the clk, clk_en, and reset ports are required
for multi-cycle custom instructions. However, the start, done, dataa,
datab, and result ports are optional. Implement them only if the
custom instruction functionality specifically needs them.

Multi-Cycle Port Operation

The section provides operational details for the multi-cycle custom
instruction hardware port. Figure 1–6 shows the multi-cycle custom
instruction timing diagram.

■ The processor asserts the active high start port on the first clock
cycle of execution when the custom instruction issues through the
ALU. At this time, the dataa and datab ports have valid values and
remain valid throughout the duration of the custom instruction
execution.

■ Fixed or variable length custom instruction port operation:
● Fixed length: The processor asserts start, waits a specified

number of clock cycles, and then reads result. For an n-cycle
operation, the custom logic block must present valid data on the
(n-1)st rising edge after the start port is asserted.

● Variable length: The processor waits until the active high done
port is asserted. The processor reads the result port on the
clock edge that done is asserted. The custom logic block must
present data on the result port on the same clock cycle that the
done port is asserted.

Table 1–3. Multi-Cycle Custom Instruction Ports

Port Name Direction Required Application

clk Input Yes System clock

clk_en Input Yes Clock enable

reset Input Yes Synchronous reset

start Input No Commands custom instruction logic to start execution

done Output No Custom instruction logic indicates to the processor that
execution is complete.

dataa[31..0] Input No Input operand to custom instruction

datab[31..0] Input No Input operand to custom instruction

result[31..0] Output No Result from custom instruction
1–8 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
■ The Nios II system clock feeds the custom logic block’s clk port, and
the Nios II system’s master reset feeds the active high reset port.
The reset port is asserted only when the whole Nios II system is
reset.

■ The custom logic block must treat the active high clk_en port as a
conventional clock qualifier signal, ignoring clk while clk_en is
deasserted.

■ Any port in the custom logic block that is not recognized as a custom
instruction port is considered to be an external interface.

■ You can further optimize multi-cycle custom instructions by
implementing the extended internal register file, or by creating
external interface custom instructions. Refer to “Extended Custom
Instruction Architecture” on page 1–9, “Internal Register File
Custom Instruction Architecture” on page 1–11, or “External
Interface Custom Instruction Architecture” on page 1–12.

Figure 1–6. Multi-Cycle Custom Instruction Timing Diagram

Extended Custom Instruction Architecture

Extended custom instruction architecture allows a single custom logic
block to implement several different operations. Extended custom
instructions use the N field to specify which operation the logic block
performs. The N field of the instruction word can be up to eight bits wide,
allowing a single custom logic block to implement up to 256 different
operations.

Figure 1–7 is a block diagram of an extended custom instruction with bit
swap, byte swap, and half-word swap operations.
Altera Corporation Nios II Processor v. 7.1 1–9
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
Figure 1–7. Extended Custom Instruction with Swap Operations

The custom instruction in Figure 1–7 on page 1–10 performs swap
operations on data received at the dataa port. It uses the two-bit-wide n
port to select the output from a multiplexer, determining which result is
presented to the result port. Input to the n port comes directly from the
N field of the custom instruction word.

1 This logic is just a simple example, using a multiplexer on the
output. You can implement function selection based on the N
field in any way that is appropriate for your application.

Extended custom instructions can be combinatorial or multi-cycle custom
instructions. To implement an extended custom instruction, simply add
an n port to your custom instruction logic. The bit width of the n port is a
function of the number of operations the custom logic block can perform.

Extended custom instructions occupy multiple custom
instruction indices. For example, the custom instruction
illustrated in Figure 1–7 on page 1–10 occupies 4 indices,
because n is two bits wide. Therefore, when this instruction is
implemented in a Nios II system, it leaves 256 - 4 = 252 available
indices. For information about the custom instruction index, see
“Custom Instruction Assembly Software Interface” on page 2–4.

Extended Custom Instruction Port Operation

The n port behaves similarly to the dataa port. The processor presents
the n port on the rising edge of the clock when start is asserted, and the
n port remains stable throughout the execution of the custom instruction.

dataa[31..0]

0

1

2

n[1..0]

result[31..0]

bit-swap
operation

byte-swap
operation

half-word-swap
operation
1–10 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
All other custom instruction port operations remain the same.

Internal Register File Custom Instruction Architecture

The Nios II processor allows custom instruction logic to access its own
internal register file for I/O, which provides you the flexibility to specify
if the custom instruction reads its operands from the Nios II processor’s
register file or from the custom instruction’s own internal register file. In
addition, a custom instruction can write its results to the local register file
rather than the Nios II processor’s register file.

Internal registers accessing custom instructions use readra, readrb,
and writerc to determine if I/O takes place between the Nios II
processor’s register file or an internal register file. Additionally, ports a,
b, and c specify which internal registers to read from and/or write to. For
example, if readra is deasserted (that is, read from the internal register),
a provides an index to the internal register file.

For further details of Nios II custom instruction implementation, refer to
the Instruction Set Reference chapter of the Nios II Processor Reference
Handbook.

Figure 1–8 shows a simple multiply-accumulate custom logic block.

Figure 1–8. Multiply-Accumulate Custom Logic Block

When readrb is deasserted, the logic block multiplies dataa and
datab, and stores the results in the accumulate register. The Nios II
processor can read back those results. Alternatively, the processor can
read the value in the accumulator as input to the multiplier by asserting
readrb.

dataa[31..0]

datab[31..0]

readrb

result[31..0]Multiply Accumulate
Altera Corporation Nios II Processor v. 7.1 1–11
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
Table 1–4 lists the internal register file custom instruction ports. Use these
optional ports only if the custom instruction functionality requires them.

Internal Register File Custom Instruction Port Operation

The readra, readrb, writerc, and a, b, and c ports behave similarly
to dataa.When the start port is asserted, the processor presents the
readra, readrb, writerc, a, b, and c ports on the rising edge of the
processor clock. All the ports remain stable throughout the execution of
the custom instructions.

To determine how to handle register file I/O, custom instruction logic
reads the active high readra, readrb, and writerc ports. The logic
uses the a, b, and c ports as register file indexes. When readra or
readrb are not asserted, the custom instruction logic ignores the
corresponding a or b port. When writerc is not asserted, the processor
ignores the value driven on the result port.

All other custom instructions port operations remain the same.

External Interface Custom Instruction Architecture

Figure 1–9 shows that the Nios II custom instructions allow you to add an
interface to communicate with logic outside of the processor’s data path.
At system generation, any interfaces that are not recognized as custom
instruction ports propagate out to the top level of the SOPC Builder
module where external logic can access the interfaces.

Table 1–4. Internal Register File Custom Instruction Ports

Port Name Direction Required Application

readra Input No If readra is high, the Nios II processor supplies dataa and datab.
If readra is low, custom instruction logic reads the internal register
file indexed by a.

readrb Input No If readrb is high, the Nios II processor supplies dataa and datab.
If readrb is low, custom instruction logic reads the internal register
file indexed by a.

writerc Input No Causes custom instruction to write result of c to custom instruction
internal register file.

a Input No Custom instruction internal register file index

b Input No Custom instruction internal register file index

c Input No Custom instruction internal register file index
1–12 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Nios II Custom Instruction Overview
Because the custom instruction logic is able to access memory external to
the processor, it extends the capabilities of the custom instruction logic.

Figure 1–9. Custom Instructions Allow the Addition of an External Interface

Figure 1–9 shows a multi-cycle custom instruction that has an external
memory interface.

Custom instruction logic can perform various tasks, for example, store
intermediate results, or read memory to control the custom instruction
operation. The optional external interface also provides a dedicated path
for data to flow into, or out of, the processor. For example, custom
instruction logic can feed data directly from the processor’s register file to
an external first-in first-out (FIFO) memory buffer, bypassing the
processor’s data bus.

dataa[31..0]
datab[31..0]

clk
clk_en

reset
start

Optional Interface

done

result[31..0]
Altera Corporation Nios II Processor v. 7.1 1–13
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Architectural Types
1–14 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Altera Corporation N
May 2007
2. Software Interface
Introduction The Nios II custom instruction software interface abstracts logic
implementation details from the application code. During the build
process the Nios II IDE generates macros that allow easy access from
application code to custom instructions.

This chapter provides custom instruction software interface details
including:

■ “Custom Instruction Examples” on page 2–1
■ “Built-In Functions and User-Defined Macros” on page 2–2
■ “Custom Instruction Assembly Software Interface” on page 2–4

Custom
Instruction
Examples

Example 2–1 shows a portion of the system.h header file that defines the
macro for a bit swap custom instruction. This bit swap example uses one
32-bit input and performs only one function.

Example 2–1. Bit Swap Macro Definition

#define ALT_CI_BSWAP_N 0x00

#define ALT_CI_BSWAP(A) __builtin_custom_ini(ALT_CI_BSWAP_N,(A))

In Example 2–1, ALT_CI_BSWAP_N is defined to be 0x0, which is the
custom instruction’s index. The ALT_CI_BSWAP(A) macro is mapped to
a gcc built-in function that takes a single argument.

Example 2–2 illustrates a bit swap custom instruction used in application
code.
ios II Processor v. 7.1 2–1

Built-In Functions and User-Defined Macros
Example 2–2. Bit Swap Instruction Usage

1. #include "system.h"
2.
3.
4. int main (void)
5. {
6. int a = 0x12345678;
7. int a_swap = 0;
8.
9. a_swap = ALT_CI_BSWAP(a);
10. return 0;
11.}

In Example 2–2, the system.h file is included to define the custom
instruction macro definitions. The example declares two integers, a and
a_swap. Integer a is passed as input to the bit swap custom instruction
with the results loaded into a_swap.

Example 2–2 accommodates most applications using custom instructions.
The macros defined by the Nios II IDE only make use of C integer types.
Occasionally, applications need to make use of input types other than
integers, and therefore, need to pass expected return values other than
integers.

1 You can define custom macros for Nios II custom instructions,
that allow for other 32-bit input types to interface with custom
instructions.

Built-In
Functions and
User-Defined
Macros

The Nios II processor uses gcc built-in functions to map to custom
instructions. By using built-in functions, software can use non-integer
types with custom instructions. There are 52 uniquely-defined built-in
functions to accommodate the different combinations of the supported
types.

Built-in function names have the following format:

__builtin_custom_<return type>n<parameter types>
2–2 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Software Interface
Table 2–1 shows 32-bit types supported by custom instructions as
parameters and return types, as well as the abbreviations used in the
built-in function name.

Example 2–3 shows the prototype definitions for two built-in functions.

Example 2–3. Built-in Functions

void __builtin_custom_nf (int n, float dataa);
float __builtin_custom_fnp (int n, void * dataa);

In Example 2–3, the _builtin_custom_nf function takes an int and a
float as inputs, and does not return a value. In contrast, the
_builtin_custom_fnp function takes a pointer as an input, and
returns a float.

To support non-integer input types, define macros with mnemonic names
that map to the specific built-in function required for the application.

f Refer to Appendix B, Custom Instruction Built-In Functions for detailed
information, and a list of built-in functions.

Example 2–4 shows user-defined custom instruction macros used in an
application.

Table 2–1. 32-Bit Types Support by Custom Instructions

Type Built-In Function Abbreviation

int i

float f

void * p
Altera Corporation Nios II Processor v. 7.1 2–3
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Assembly Software Interface
Example 2–4. Custom Instruction Macro Usage

1. /* define void udef_macro1(float data); */
2. #define UDEF_MACRO1_N 0x00
3. #define UDEF_MACRO1(A) __builtin_custom_nf(UDEF_MACRO1_N, (A));
4. /* define float udef_macro2(void *data); */
5. #define UDEF_MACRO2_N 0x01
6. #define UDEF_MACRO2(B) __builtin_custom_fnp(UDEF_MACRO2_N, (B));
7.
8. int main (void)
9. {
10. float a = 1.789;
11. float b = 0.0;
12. float *pt_a = &a;
13.
14. UDEF_MACRO1(a);
15. b = UDEF_MACRO2((void *)pt_a);
16. return 0;
17. }

On lines 2 through 6, the user-defined macros are declared and mapped
to the appropriate built-in functions. The macro UDEF_MACRO1 takes a
float as an input parameter and does not return anything. The macro
UDEF_MACRO2 takes a pointer as an input parameter and returns a float.
Lines 14 and 15 show the use of the two user-defined macros.

Custom
Instruction
Assembly
Software
Interface

The Nios II custom instructions are also accessible in assembly code. This
section describes the assembly interface.

Custom instructions are R-type instructions, containing:

■ A 6-bit opcode
■ Three 5-bit register index fields
■ Three 1-bit fields for the readra, readrb and writerc ports
■ An 8-bit N field, used for the custom instruction index (opcode

extension), and optionally including a function select subfield

Figure 2–1 on page 2–5 is a diagram of the custom instruction word.
2–4 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Software Interface
Figure 2–1. Custom Instruction Word

Bits 5–0 are the Nios II custom instruction opcode, as specified in the
“Instruction Opcodes” section in the Instruction Set Reference chapter of the
Nios II Processor Reference Handbook. This value appears in every custom
instruction.

The N field, bits 13–6, is the custom instruction index. The custom
instruction index distinguishes between different custom instructions,
allowing the Nios II processor to support up to 256 distinct custom
instructions. Depending on the type of custom instruction, the N field
represents one of the following:

■ A unique custom instruction index, for logic that implements a single
custom function

■ An extended custom instruction index, for logic that implements
several custom functions

Example 2–5 shows the assembly language syntax for the custom
instruction.

Example 2–5. Custom Instruction Syntax

custom N, xC, xA, xB

In Example 2–5, N is the custom instruction index, xC is the destination for
the result[31..0] port, xA is the dataa port, and xB is the datab
port. To access the Nios II processor’s register file, replace x with r. To
access a custom register file, replace x with c.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NCBA uP OPCode = Custom

writerc
readrb
readra

A = Register index of operand A
B = Register index of operand B
C = Register index of operand C
N = 8-bit number that selects instruction

readra = 1 if instruction uses rA, 0 otherwise
readrb = 1 if instruction uses rB, 0 otherwise
writerc = 1 if instruction provides result for rC, 0 otherwise

Instruction Fields:
Altera Corporation Nios II Processor v. 7.1 2–5
May 2007 Nios II Custom Instruction User Guide

Custom Instruction Assembly Software Interface
Examples 2–6 and 2–7 show the syntax for two examples of custom
instruction assembler calls.

Example 2–6. Custom Instruction Index=0

custom 0, r6, r7, r8

Example 2–6 executes a custom instruction with an index of 0. The
contents of the Nios II processor registers r7 and r8 are used as input,
with the results stored in the Nios II processor register r6.

Example 2–7. Custom Instruction Index=3

custom 3, c1, r2, c4

Example 2–7 executes a custom instruction with an index of 3. The
contents of the Nios II processor register r2 and custom register c4 are
used as inputs. The results are stored in the custom register c1.

f For further information about the binary format of custom instructions,
refer to the Instruction Set Reference chapter of the Nios II Processor
Reference Handbook.
2–6 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Altera Corporation N
May 2007
3. Implementing a Nios II
Custom Instruction
Introduction This chapter describes the process of implementing a Nios II custom
instruction with the SOPC Builder component editor.The component
editor enables you to create new SOPC Builder components, including
Nios II custom instructions.

f For detailed information about the SOPC Builder component editor,
refer to the Component Editor chapter of the Quartus II Handbook Volume 4:
SOPC Builder.

Implementing
Custom
Instruction
Hardware in
SOPC Builder

Implementing a Nios II custom instruction entails the following tasks:

■ “Open the Component Editor” on page 3–1
■ “Add the Top-Level HDL File” on page 3–3
■ “Import Simulation Files” on page 3–4
■ “Configure the Custom Instruction Ports” on page 3–4
■ “Set Up Additional Interfaces” on page 3–5
■ “Set the Component Group Name” on page 3–6
■ “Save the Custom Instruction” on page 3–7
■ “Generate the SOPC Builder System and Compile in Quartus II

Software” on page 3–9

The following sections detail the steps required to carry out these tasks.
This process imports the custom instruction into the design, and adds it
to the Nios II processor.

Open the Component Editor

1. Open the SOPC Builder system.

f For detailed information about opening and working with
SOPC Builder systems, refer to the Quartus II Handbook
Volume 4: SOPC Builder, or to the SOPC Builder Help
system.

2. Select the Nios II processor in the Altera SOPC Builder System
Contents page.

3. In the Module menu, click Edit…. The Nios II configuration wizard
appears.
ios II Processor v. 7.1 3–1

Implementing Custom Instruction Hardware in SOPC Builder
4. Select the Custom Instructions page, shown in Figure 3–1

Figure 3–1. Nios II Configuration Wizard Custom Instructions Page

5. Click Import… The SOPC Builder component editor appears,
displaying the Introduction tab.
3–2 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Implementing a Nios II Custom Instruction
Figure 3–2. Component Editor

Add the Top-Level HDL File

1. Click Next to display the HDL Files tab, shown in Figure 3–2.

2. Click Set HDL File.

3. Browse to the directory containing the top-level hardware definition
language (HDL) file, and select it.

4. Click Open. The component editor shows the HDL file in the Top
Level File list.

The Quartus II Analyzer checks the design for errors in the
background. The HDL file list blinks while analysis is taking place.
When analysis is complete, a dialog box reports Info: Quartus II
Analysis & Synthesis was successful.

5. Click OK.
Altera Corporation Nios II Processor v. 7.1 3–3
May 2007 Nios II Custom Instruction User Guide

Implementing Custom Instruction Hardware in SOPC Builder
Import Simulation Files

If you are running the system in ModelSim, and you have additional
simulation files, import them by using the Add Simulation File... button.

Figure 3–3. Component Editor: Signals Tab

Configure the Custom Instruction Ports

1. Click Next to display the Signals tab, shown in Figure 3–3. There are
several ports (signals) listed.

2. For the first port, carry out the following steps:

a. Select the port.

b. In the drop-down box under Interface, select New
nios_custom_instruction slave. The component editor creates a
new interface, nios_custom_instruction_slave_<n>, which
appears in the drop-down box.
3–4 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Implementing a Nios II Custom Instruction
The component editor names each Nios II custom instruction
sequentially, starting with <n> = 0.

c. In the drop-down box under Signal Type, select the signal type
corresponding to the port name. For example, if the custom
instruction hardware presents the result on a port named
output, you set the type of output to result.

For further information about signal types, see “Custom
Instruction Architectural Types” on page 1–4.

3. For each additional port, carry out the following steps:

a. Select the port.

b. In the drop-down box under Interface, select
nios_custom_instruction_slave_<n>, the Nios II custom
instruction slave interface you created in step 2.

c. In the drop-down box under Signal Type, select the signal type
corresponding to the port name.

Set Up Additional Interfaces

Exported signal types are considered to be a part of the custom
instruction’s external interface. This section describes how to set up
custom interfaces.

For further information about external interface custom instructions, see
“Custom Instruction Architectural Types” on page 1–4.

If your custom instruction hardware requires additional interfaces, either
to the Avalon-MM system interconnect fabric or outside the SOPC
Builder system, you can specify these interfaces here.

1 Most custom instructions use some combination of standard
custom instruction ports, such as dataa, datab, and result,
and do not require any additional interfaces.

Also custom instructions can be published for later reuse in different
projects.

1. Click Next to display the Interfaces tab, shown in Figure 3–4 on
page 3–6.
Altera Corporation Nios II Processor v. 7.1 3–5
May 2007 Nios II Custom Instruction User Guide

Implementing Custom Instruction Hardware in SOPC Builder
Figure 3–4. Component Editor: Interfaces Tab

2. If there is a message reporting Interface has no signals, click
Remove Interfaces With No Signals. The message disappears.

Set the Component Group Name

1. Click Next to display the Component Wizard tab.

2. In the Component Group text box, type Custom Instructions,
as shown in Figure 3–5.
3–6 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Implementing a Nios II Custom Instruction
Figure 3–5. Component Editor: Component Wizard Tab

3. Make sure the bottom pane of the dialog box displays the message
Component "<design name>" is ok. If it does not, review the
preceding steps.

Save the Custom Instruction

1. Click Finish. A dialog box states You are about to save <design
name> 1.0 to: ... followed by the name of the directory containing
the top-level HDL file.

2. Click Yes to finish importing the custom instruction and return to
the Nios II configuration wizard.

3. Select the new custom instruction, and click Add to add it to the
Nios II processor.

As shown in Figure 3–6, after you add the custom instruction to the
processor, the Name field lists the top level module name.
Altera Corporation Nios II Processor v. 7.1 3–7
May 2007 Nios II Custom Instruction User Guide

Implementing Custom Instruction Hardware in SOPC Builder
Figure 3–6. Altera Nios II Configuration Wizard with Custom Instruction

The Clock Cycles field indicates the type of custom instruction:
combinatorial logic, multi-cycle, extended, internal register file, or
external interface. If the custom instruction is a fixed length, multi-
cycle custom instruction, you must edit this field to specify the
number of clocks. You must determine this number based on
knowledge of the custom instruction state machine. In the case of a
variable length multi-cycle custom instruction, the Clock Cycles
field displays Variable.
3–8 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Implementing a Nios II Custom Instruction
The N port field indicates whether the custom instruction is an
extended type. In the case of an extended custom instruction, this
field indicates which bits in the n port serve as the function select.
Otherwise it displays a dash (-).

The Opcode Extension field displays the custom instruction index (N
field) in the instruction word. The value appears in both binary and
decimal formats. For further information about the N field, see
“Custom Instruction Assembly Software Interface” on page 2–4.

4. In the Nios II configuration wizard, click Finish to finish adding the
custom instruction to the system and return to the SOPC Builder
window.

Generate the SOPC Builder System and Compile in Quartus II
Software

After the custom instruction logic is added to the system, you are ready
for system generation and Quartus II compilation. During system
generation, SOPC Builder connects the custom logic to the Nios II
processor.

f For detailed instructions on generating SOPC Builder systems, refer to
the Quartus II Handbook Volume 4: SOPC Builder, or to the SOPC Builder
Help system.

Accessing the
Custom
Instruction from
Software

Adding a custom instruction to a Nios II processor results in a significant
change to the SOPC Builder system. The next time you run any related
Nios II program in the Nios II IDE, the IDE rebuilds the software project
to accommodate the changes. The IDE adds the macros for the custom
instruction to the system.h header file.

For details about writing software for Nios II custom instructions, see
Chapter 2, Software Interface.
Altera Corporation Nios II Processor v. 7.1 3–9
May 2007 Nios II Custom Instruction User Guide

Accessing the Custom Instruction from Software
3–10 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Altera Corporation <S
May 2007
Appendix A. Custom
Instruction Templates
Overview This section provides VHDL and Verilog HDL custom instruction
wrapper file templates that you can reference when writing custom
instructions in VHDL and Verilog HDL.

f You can download the template files from the Altera web site at
www.altera.com/nios.

VHDL Template Sample VHDL template file:

LIBRARY <__library_name>;
USE <__library_name>.<__package_name>.ALL;

ENTITY <__entity_name> IS
 PORT(

signal clk : IN STD_LOGIC; -- CPU's master-input clk <required for multi-cycle>
signal reset : IN STD_LOGIC; -- CPU's master asynchronous reset <required for multi-cycle>
signal clk_en: IN STD_LOGIC; -- Clock-qualifier <required for multi-cycle>
signal start: IN STD_LOGIC; -- True when this instr. issues <required for multi-cycle>
signal done: OUT STD_LOGIC; -- True when instr. completes <required for variable muli-cycle>
signal dataa: IN STD_LOGIC_VECTOR (31 DOWNTO 0); -- operand A <always required>
signal datab: IN STD_LOGIC_VECTOR (31 DOWNTO 0); -- operand B <optional>
signal n: IN STD_LOGIC_VECTOR (7 DOWNTO 0); -- N-field selector <required for extended>
signal a: IN STD_LOGIC_VECTOR (4 DOWNTO 0); -- operand A selector <used for Internal register

file access>
signal b: IN STD_LOGIC_VECTOR (4 DOWNTO 0); -- operand B selector <used for Internal register

file access>
signal c: IN STD_LOGIC; -- result destination selector <used for Internal register file

access>
signal readra: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal readrb: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal writerc: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) -- result <always required>

);
END <__entity_name>;

ARCHITECTURE a OF <__entity_name> IS
 signal clk: IN STD_LOGIC;
 signal reset : IN STD_LOGIC;
 signal clk_en: IN STD_LOGIC;
 signal start: IN STD_LOGIC;
 signal readra: IN STD_LOGIC;
 signal readrb: IN STD_LOGIC;
 signal writerc: IN STD_LOGIC;
 signal n: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 signal a: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal b: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal c: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal dataa: IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 signal datab: IN STD_LOGIC_VECTOR (31 DOWNTO 0);

 signal result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
et Version Info Here> 2–1

Verilog HDL Template
 signal done: OUT STD_LOGIC;
BEGIN

-- Process Statement
-- Concurrent Procedure Call
-- Concurrent Signal Assignment
-- Conditional Signal Assignment
-- Selected Signal Assignment
-- Component Instantiation Statement
-- Generate Statement

END a;

Verilog HDL
Template

Sample Verilog HDL template file:

//Verilog Custom Instruction Template

module <__module_name>(
clk, // CPU's master-input clk <required for multi-cycle>
reset, // CPU's master asynchronous reset <required for multi-cycle>
clk_en, // Clock-qualifier <required for multi-cycle>
start, // True when this instr. issues <required for multi-cycle>
done, // True when instr. completes <required for variable muli-cycle>
dataa, // operand A <always required>
datab, // operand B <optional>
n, // N-field selector <required for extended>
a, // operand A selector <used for Internal register file access>
b, // operand b selector <used for Internal register file access>
c, // result destination selector <used for Internal register file access>
readra, // register file index <used for Internal register file access>
readrb, // register file index <used for Internal register file access>
writerc,// register file index <used for Internal register file access>
result // result <always required>
);

input clk;
input reset;
input clk_en;
input start;
input readra;
input readrb;
input writerc;
input [7:0] n;
input [4:0] a;
input [4:0] b;
input [4:0] c;
input [31:0]dataa;
input [31:0]datab;

output[31:0]result;
output done;

// Port Declaration

// Wire Declaration

// Integer Declaration

// Concurrent Assignment
2–2 <Set Version Info Here> Altera Corporation
<BOOK_TITLE variable> May 2007

// Always Construct

endmodule
Altera Corporation <Set Version Info Here> 2–3
May 2007 <BOOK_TITLE variable>

Verilog HDL Template
2–4 <Set Version Info Here> Altera Corporation
<BOOK_TITLE variable> May 2007

Altera Corporation N
May 2007
Appendix B. Custom
Instruction Built-In Functions
Overview The Nios II gcc compiler is customized with built-in functions to support
custom instructions. This section lists the built-in functions.

f For more information about gcc built-in functions, refer to
www.gnu.org.

Nios II custom instruction built-in functions are of the following types:

■ Returning void
■ Returning int
■ Returning float
■ Returning a pointer

Built-In
Functions
Returning void

void __builtin_custom_n (int n);
void __builtin_custom_ni (int n, int dataa);
void __builtin_custom_nf (int n, float dataa);
void __builtin_custom_np (int n, void *dataa);
void __builtin_custom_nii (int n, int dataa, int datab);
void __builtin_custom_nif (int n, int dataa, float datab);
void __builtin_custom_nip (int n, int dataa, void *datab);
void __builtin_custom_nfi (int n, float dataa, int datab);
void __builtin_custom_nff (int n, float dataa, float datab);
void __builtin_custom_nfp (int n, float dataa, void *datab);
void __builtin_custom_npi (int n, void *dataa, int datab);
void __builtin_custom_npf (int n, void *dataa, float datab);
void __builtin_custom_npp (int n, void *dataa, void *datab);

Built-in
Functions
Returning int

int __builtin_custom_in (int n);
int __builtin_custom_ini (int n, int dataa);
int __builtin_custom_inf (int n, float dataa);
int __builtin_custom_inp (int n, void *dataa);
int __builtin_custom_inii (int n, int dataa, int datab);
int __builtin_custom_inif (int n, int dataa, float datab);
int __builtin_custom_inip (int n, int dataa, void *datab);
int __builtin_custom_infi (int n, float dataa, int datab);
int __builtin_custom_inff (int n, float dataa, float datab);
int __builtin_custom_infp (int n, float dataa, void *datab);
int __builtin_custom_inpi (int n, void *dataa, int datab);
int __builtin_custom_inpf (int n, void *dataa, float datab);
int __builtin_custom_inpp (int n, void *dataa, void *datab);
ios II Processor v. 7.1 B–1

Built-in Functions Returning float
Built-in
Functions
Returning float

float __builtin_custom_fn (int n);
float __builtin_custom_fni (int n, int dataa);
float __builtin_custom_fnf (int n, float dataa);
float __builtin_custom_fnp (int n, void *dataa);
float __builtin_custom_fnii (int n, int dataa, int datab);
float __builtin_custom_fnif (int n, int dataa, float datab);
float __builtin_custom_fnip (int n, int dataa, void *datab);
float __builtin_custom_fnfi (int n, float dataa, int datab);
float __builtin_custom_fnff (int n, float dataa, float datab);
float __builtin_custom_fnfp (int n, float dataa, void *datab);
float __builtin_custom_fnpi (int n, void *dataa, int datab);
float __builtin_custom_fnpf (int n, void *dataa, float datab);
float __builtin_custom_fnpp (int n, void *dataa, void *datab);

Built-in
Functions
Returning a
Pointer

void *__builtin_custom_pn (int n);
void *__builtin_custom_pni (int n, int dataa);
void *__builtin_custom_pnf (int n, float dataa);
void *__builtin_custom_pnp (int n, void *dataa);
void *__builtin_custom_pnii (int n, int dataa, int datab);
void *__builtin_custom_pnif (int n, int dataa, float datab);
void *__builtin_custom_pnip (int n, int dataa, void *datab);
void *__builtin_custom_pnfi (int n, float dataa, int datab);
void *__builtin_custom_pnff (int n, float dataa, float datab);
void *__builtin_custom_pnfp (int n, float dataa, void *datab);
void *__builtin_custom_pnpi (int n, void *dataa, int datab);
void *__builtin_custom_pnpf (int n, void *dataa, float datab);
void *__builtin_custom_pnpp (int n, void *dataa, void *datab);
B–2 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

Altera Corporation N
May 2007
Appendix C. Porting First-
Generation Nios Custom

Instructions to Nios II Systems
Overview Most first-generation Nios custom instructions will port over to a Nios II
system with minimal changes. This chapter clarifies hardware and
software considerations when porting first-generation Nios custom
instructions to your Nios II system.

Hardware
Porting
Considerations

Both combinatorial and multi-cycle first-generation Nios custom
instructions will work with a Nios II system without any changes.
However, because parameterized first-generation Nios custom
instructions allow a prefix to be passed to the custom instruction logic
block, parameterized first-generation Nios custom instructions require a
design change.

There is no strict definition for the use of prefixes in first-generation Nios
systems, but in most cases the prefix controls the operation performed by
the custom instruction. However in a Nios II system, the prefix option is
supported directly by extended custom instructions. Therefore, any
parameterized first-generation Nios custom instruction that uses a prefix
to control the operation executed by the custom instruction should be
ported to a Nios II extended custom instruction. Refer to “Extended
Custom Instruction Architecture” on page 1–9.

Any other use of the prefix can be accomplished with one of the Nios II
custom instruction architecture types. Refer to “Custom Instruction
Architectural Types” on page 1–4.

Software Porting
Considerations

All first-generation Nios custom instructions will require a small change
to application software. Assuming no hardware changes (i.e., not a
parameterized first-generation custom instruction), software porting
should be nothing more than a search and replace operation. The first-
generation Nios and Nios II system macro definition nomenclature is
different; therefore first-generation Nios macro calls should be replaced
by the Nios II macros. In the case of parameterized first-generation
custom instructions, additional changes will be required depending on
the implementation. Refer to Chapter 2, Software Interface.
ios II Processor v. 7.1 C–1

Software Porting Considerations
C–2 Nios II Processor v. 7.1 Altera Corporation
Nios II Custom Instruction User Guide May 2007

	Nios II Custom Instruction
	Contents
	About this User Guide
	Revision History
	How to Contact Altera
	Typographic Conventions

	1. Nios II Custom Instruction Overview
	Introduction
	Custom Instruction Overview
	Implementing Custom Instruction Hardware
	Implementing Custom Instruction Software

	Custom Instruction Architectural Types
	Combinatorial Custom Instruction Architecture
	Combinatorial Port Operation

	Multi-Cycle Custom Instruction Architecture
	Multi-Cycle Port Operation

	Extended Custom Instruction Architecture
	Extended Custom Instruction Port Operation

	Internal Register File Custom Instruction Architecture
	Internal Register File Custom Instruction Port Operation

	External Interface Custom Instruction Architecture

	2. Software Interface
	Introduction
	Custom Instruction Examples
	Built-In Functions and User-Defined Macros
	Custom Instruction Assembly Software Interface

	3. Implementing a Nios II Custom Instruction
	Introduction
	Implementing Custom Instruction Hardware in SOPC Builder
	Open the Component Editor
	Add the Top-Level HDL File
	Import Simulation Files
	Configure the Custom Instruction Ports
	Set Up Additional Interfaces
	Set the Component Group Name
	Save the Custom Instruction
	Generate the SOPC Builder System and Compile in Quartus II Software

	Accessing the Custom Instruction from Software

	Appendix A. Custom Instruction Templates
	Overview
	VHDL Template
	Verilog HDL Template

	Appendix B. Custom Instruction Built-In Functions
	Overview
	Built-In Functions Returning void
	Built-in Functions Returning int
	Built-in Functions Returning float
	Built-in Functions Returning a Pointer

	Appendix C. Porting First- Generation Nios Custom Instructions to Nios II Systems
	Overview
	Hardware Porting Considerations
	Software Porting Considerations

