

C Programming on MSL Nios II
System Tutorial

Frank Franjo Plavec

September 2007

University of Toronto

1

Running Your first Program on Nios II

1. Click on Start->Programs->Altera->Nios II EDS 7.1->Nios II 7.1 Command Shell
A new command line window will open. This is Cygwin window, a Unix-like interface for windows.
You can use many common Unix commands in this window. We will use it to compile and run the
programs.

2. Type cd w:
This takes you to the W drive, which is where your UGSPARC account is mounted, and where
you have personal space of approximately 300MB.

3. Create a folder named TUTORIAL, or any other name you choose. The rest of the tutorial
assumes the folder name is TUTORIAL, so if you use a different name, keep that in mind. The
command to create the folder is mkdi r TUTORI AL
Enter the newly created folder: cd TUTORI AL

4. Open Internet Explorer. The MSL web-site should pop-up immediately (If it doesn’t go to the
following address: http://www-ug.eecg.toronto.edu/msl/)
Click on "Nios II" on the left side, and then on "Running" (also on the left side). There is a link to
Makefile on that page. Right-click on the link and select "Save Target As". Locate W: drive and
save the file in the folder you created in the previous step (TUTORIAL).
This Makefile will be used to compile and run all the programs and to start the debugger.

5. Turn on the DE2 board (two switches: power supply and the red button on the board)
Go back to the command prompt and type make t est
If you get an error message like this:
make: * * * No r ul e t o make t ar get ` t est ' . St op.
you probably saved the Makefile as text file. Go back to the Internet Explorer and select “Save
Target As” again. When the "Save As" dialog box pops up, go to the folder where you want to
save it, and enclose Makefile into quotations like this " Makef i l e" (keep quote marks). This
assumes that you deleted .txt part from the name.
Go back to the command prompt and type make t est
After short time the test program should be downloaded to the board, and the 7-segment displays
should start counting and LEDs flashing.

2

6. Type
make hel p
into the Command line window. Examine the various options offered.
Don't worry if you don't understand them all yet. We will cover all you need.

Compiling Your First Program

The program you downloaded in the previous exercise was already pre-compiled for you. If you
check the command line window, you will see that a file test.elf was downloaded to the board.
ELF stands for "Executable and Linkable Format", which is a common standard file format used
for executables. In this exercise you will compile your first program and download it to the board.
You will now learn how to compile and run a C program starting from its source.

1. Go to the MSL web-site. Click on Nios II and then Devices on the left side. Click on "Slider
Switches". This page describes how to use the slider switches (surprise, surprise :)) on the DE2
board. The table contains various information, including the base address where the register
corresponding to the switches resides. Default Nios II system maps each device on the board to a
register in the Nios II address space. This means that reading from this memory address will read
the state of the switches. All you need in C is a pointer that points to that memory location.

2. Below the table there are two pieces of code, one written in assembly, the other one in C. For
this tutorial, always use the C code sample. Select all text below the “C Example” title, right click
and select Copy. Open Notepad and paste the copied text. Save the file in the TUTORIAL folder
and call it " swi t ches. c" Once again, be careful to enclose the name in quotes, so that it does
NOT get saved with .txt extension.

3. Go back to the command-line window and type
make SRCS=" swi t ches. c" r un
If you get an error message like this:
make: * * * No r ul e t o make t ar get ` swi t ches. o' , needed by ` pr og. el f ' .
St op.
you probably didn't save the file swi t ches. c appropriately (might have a . t x t extension).

If you did everything right, the program will be compiled and downloaded onto the board. The
state of the red LEDs will correspond to the state of the input switches. Try flipping a few switches
to see what happens.
Does LED4 behave as expected? Can you explain its behaviour based on the source code you
typed into Notepad?

Basic Debugging

The previous exercise taught you how to compile and run a program. In the following exercise we
will show how to debug programs.

1. At the MSL web-site locate the documentation for Hexkeypad. Copy the C example code into

Notepad and save the file into TUTORIAL folder with file name hexkeypad. c .

2. Before using this file, you will have to attach the hex keypad to the DE2 board. The code you

will be using requires the keypad to be connected to the JP1 expansion header (the left one)
on the DE2 board. To attach the keyboard, you will require a 40-pin ribbon cable from the lab
kit. The cable can be plugged into the keypad and into the board only one way, because of a
notch on one side of the header.

3

BE CAREFUL to connect the keypad to the correct header, and to plug the cable into the
headers the right way.

3. In the command-line window type

make SRCS=" hexkeypad. c" debug

The program will be compiled and debugger window will pop-up. The debugger window that
opens is a GUI (Graphical User Interface) for the standard GDB debugger. The user interface is
called Insight Debugger, and should look like this:

The debugger starts with the Source Window open and pauses the execution at the entry to the
main() function in your program. Pay attention to the three drop-down boxes on top of the window.

The first box from the left is used to select one of the source files for the currently running
program. In this case, there are only two files: hexkeypad. c and cr t 0. s . The latter is a start-up
routine, which is a part of any C program. It is needed to set up the environment in which a C
program can run (setting up stack and global pointers, etc.)

The second box is used to select one of the functions in the currently selected file. When
hexkeypad. c is selected in the first box, you can select HexkeypadI n, HexkeypadI ni t , or
mai n function in this box, which are all the functions in the current file. Clicking on one of the
functions takes you to the source code of that function.

Finally, the third box allows you to select the display mode for the currently displayed file. You
should only use the SOURCE display mode, which displays the source code for the program
being executed. Other modes allow you to display assembly of the generated machine
instructions for the program, or mix of source code and assembly instructions. If you don’t know
what these are, do not change this setting.

Current file Current function
Display mode

(C or assembly)

Current PC

Current
line

4

Toolbar

The toolbar consists of three functional sections: execution control buttons, debugger window buttons, and
stack frame control buttons.

Execution Control Buttons

These convenience buttons provide on-screen access to the most important debugger execution control
functions. Some of the important icons you will be using are listed below. For other functions, please
consult Insight Debugger’s help system.

Step
Step the program until it reaches a different source line

Next
Step the program, proceeding through subroutine calls

Finish
Execute until the current stack frame (function) returns

Continue
Continue the program being debugged, after signal or breakpoint

Stop
The Stop Button will interrupt execution of the program. It is also used as an indication that the
debugger is busy.

Run
The Run Button is NOT USED for Nios II debugging. If you wish to restart the execution, quit the
debugger (File→Exit, and then answer Yes in the dialogue box that pops-up), and run it again.

Window Buttons

The Debugger Window buttons give instant access to the Debugger's auxiliary windows:

Local Variables
Open a Locals Window, which allows you to see the values of local variables

Memory
Open a Memory Window, which allows you to inspect content of system memory

Stack
Open a Stack Window, which displays the list of functions on the stack

Watch Expressions
Open a Watch Window, which allows you to monitor custom expressions

Breakpoints
Open a Breakpoint Window that lists all the breakpoints

Console
Open a GDB Console Window (This is NOT a terminal window)

5

4. Try to step through the program using the Step and Next commands until you notice
the difference between the two. Notice that you can do this without using the mouse, by using
keyboard shortcuts S and N.

5. In this step, we will set-up a breakpoint. Breakpoints allow you to run the program until a

certain point in the program has been reached. In our program, the hex keypad is scanned
until a key press is detected. At that point HexkeypadI n() function will return a number that
is not - 1. We will run our program until this happens. To do this, locate the line of code inside
mai n() that looks like this

* ADDR_7SEGS = i nput key;
 Note that there is a “-“ character at the beginning of that line. This indicates that this line is

“executable”. Breakpoints can be set only at executable lines of code.
Position your mouse over the dash at the beginning of that line. The mouse pointer will turn
into a circle. Left-clicking will cause a red dot to appear in that spot, which means a breakpoint
has been placed there.

6. Now that you have set the breakpoint, click on the Continue button. The program will
continue execution until it reaches the breakpoint. This should not happen until you press a
button on the hex keypad. Of course, the keypad should be attached to the board’s JP1
extension header, as previously specified

7. Press one of the keys on the keypad. Program execution should now stop at the breakpoint. If

this does not happen, double check the connection between the keypad and the DE2 board.

8. Step through the program once using the Step to see the key you pressed appear on the
7-segment displays.

9. A very useful tool in debugging is to examine the content of local variables. If you click on the

Local Variables button, you should normally get a listing of all local variables. However, in
this case the window is empty, because the compiler performed some optimizations and
debugger cannot find the i nput key variable. One way to avoid this situation is to modify the
Makefile to turn off the optimizations

IMPORTANT NOTE!!!
The debugger sometimes appears frozen: i.e. all of the buttons are greyed, and you cannot
press any of them. The resolution of this problem depends on the situation

1. You have just started the debugger and it appears frozen
Click on the area with source code (white part of the window) and press S on the keyboard.
The debugger will single-step through your code and the user-interface should become
responsive.

2. The debugger is unresponsive after you pressed Finish or Continue
Your program is probably stuck in a loop that takes a long time (possibly an infinite loop,
whether intentional or not). Press the Stop button to interrupt the program execution.

6

10. Open Windows Explorer and go to the W: \ TUTORI AL folder. Double-click on the Makef i l e.
When asked which program to use to open the file, choose Wor dPad at the end of the list.
Once the file is open, locate the following text:
%. o: %. c

ni os2- el f - gcc - g - mno- cache- vol at i l e - mno- hw- mul x - mhw- mul - mhw-
di v –O1 - f f unct i on- sect i ons - f dat a- sect i ons - f ver bose- asm - f no-
i nl i ne $(UPI NCLUDES) -
I $(NI OS2EDSPATH) / component s/ al t er a_ni os2/ HAL/ i nc -
DSYSTEM_BUS_WI DTH=32 - DALT_SI NGLE_THREADED -
D_JTAG_UART_BASE=0x00f f 10f 0 - c $?

Change the - O1 into - O0. That is, change “minus, capital letter O, one” into “minus, capital
letter O, zero”. This will change the optimization level from 1 to 0 (i.e no optimizations).

11. Select File→Save. You may get a dialogue box asking you if you really want to save the file in
a Text-Only format. Answer Yes.
If the debugger is still running exit it. Go to the Command line window and type
make cl ean
This operation will eliminate all object, elf and programming files generated by previous
compiles. This is necessary to force re-compilation of the code with new optimization options1.

12. Type make SRCS=" hexkeypad. c" debug. Repeat steps 5 through 7 above. Open the

Local Variables window and observe the value of inputkey variable. Right-click on the value of
inputkey in the Local Variables and explore the various options that can be set there.

Using terminal

In this exercise, we will add some pr i nt f () statements to the hexkeypad. c file created
above. You will also learn how to compile the program to support the terminal output, and open a
terminal window where you can see the output. printf's can be useful for printing program status to
the terminal.

1. Go to the Makefile that was opened in WordPad. In case you closed it, open it again like in

step 10 above. Change the optimizations back to - O1 (see step 10 above). You will probably
be able to use the WordPad undo function for this. Select File→Save.

2. If not already opened, open the hexkeypad. c using Notepad. Add the following directive to

the top of the file:
#i ncl ude <st di o. h>

1 You may be aware that make utility checks the “ last modified” dates of all its input files to decide whether
to regenerate the targets. However, the make utility does not check the “ last modified” date of the Makefile,
so in this case it would not regenerate the targets without first running make cl ean.

IMPORTANT NOTE!!!
In general, it is a good idea to do make cl ean if your code behaves “weird”, just to make
sure that something didn’t go wrong during compilation. Recompiling the code from
scratch sometimes (though not often) removes the weird behaviour.

IMPORTANT NOTE!!!
In case you run into unexpected problems after modifying the Makefile, you might have
inadvertently modified a section of the Makefile you shouldn’t have. Delete the Makefile, and
download it again using the procedure described in steps 4 and 5 on page 1 of this tutorial.

7

3. Inside the mai n() function add a pr i nt f statement that prints the key pressed on the
hexkey to the terminal. You can use %X printf format to avoid having to convert raw numbers
into their hex representation. Where should you place the printf statement so that it only gets
printed when a key is pressed?

4. Open another command line window (so you should have two of them open now). In the

newly opened window go to the w: drive and TUTORIAL folder and type the following:
make t er mi nal . This command-line window will now serve as an output for printf’s in your
program, and you may also use it as an input (reading keyboard) if your application requires it.

5. Go back to the other command line window and type the following

make SRCS=" hexkeypad. c" JTAGOBJ=j t ag. o r un
The JTAGOBJ=j t ag. o part specifies that standard I/O should be redirected through JTAG
UART, which is a serial link that utilizes USB port to support terminal services. In case you
forget the exact syntax of this (or any other) make command, type
make hel p

6. Once the program is compiled and loaded, the keys you press should be printed to the
terminal window (the other command line). What happens when multiple keys are pressed on
the hex keypad at the same time?

Debugging and Developing Your Own Program

In this exercise you will do some simple debugging and you will extend an existing program to add
more functionality to it.
This program demonstrates usage of switches and LEDs on the digital protoboard (the green
board below the power supply) in combination with the DE2 board. These switches and LEDs can
be used in addition to the switches and LEDs available on the DE2 board. In addition, the
protoboard can be used to test the behaviour of GPIO for other purposes.

1. Download the start-up kit (tutorial.tar.gz) from the same place where you obtained this tutorial.

2. Go to the command line window and type

t ar xzf t ut or i al . t ar . gz
This will extract several programs from the archive which will be used in this and following
exercises. One of the programs is called pr ot oboar d. c .

3. Connect the JP1 port of the DE2 board to the digital protoboard using the 40-pin ribbon cable.
Turn the power to the switchboard on (the power switch is on the breadboard – white board
with many holes).

4. Try to compile the pr ot oboar d. c program using the following command:

make SRCS=" pr ot oboar d. c" compi l e
The program should NOT compile because of an error. Open the source file and find the
cause of the error. Fix the error, and compile the program again using the above command
until the compilation succeeds.
While looking at the program, you will notice a f or loop terminated with a semicolon. The
purpose of this loop is to create a primitive time delay.

5. Run the program. Please note that you cannot run previously compiled program by simply
typing make r un. You have to type in the full command:
make SRCS=" pr ot oboar d. c" r un

8

6. Once the program starts running, you should see the “travelling light” effect on the LEDs.
Open the source code for the program and analyze it to understand how the effect is
achieved.

7. BONUS 1: Add the following functionality to the program: Let the light travel in one direction

when switch 1 on the protoboard is on, and in the opposite direction when that switch is off. If
you don’t understand all the details of how the protoboard communicates with the DE2 board,
check the protoboard documentation on the MSL web-site (Under Devices).
Once your program is working, modify the program so that it uses JP2 expansion header on
the DE2 board

8. BONUS 2: The delay in the current program is implemented using a for loop. This creates an

imprecise delay and could be optimized away by a smart compiler. Study the documentation
for the Timer available in the default Nios II system. Change the program to use the timer in
such a way that the delay between the steps is precisely set to 0.5 seconds.

Using LEGO kits

In this exercise you will learn how to use C programs to control the LEGO kit. The principle is the
same as in the previous exercise, just the device is different. This is only a short introduction to
using the LEGO kit. For detailed documentation, refer to the MSL web-site (Nios
II→Devices→Lego Controller)

1. Attach the LEGO Controller to the JP1 port of DE2 board. Attach one of the motors to the

Motor1 connector on the Lego Controller. Connect the power to the LEGO Controller.

2. Compile and run the program l ego. c that you extracted in the previous exercise. Once the

program runs, the motor should turn on. If the motor doesn’t turn on, check the motor override
switch and all the connections.

3. Change the code to turn the motor off. This can be done by writing 0x00 to the memory

location pointed to by the LegoMot or s pointer (instead of 0x01)

4. Change the code so that the motor is on for a period of time and then it turns off for a period

of time, and repeat this periodically. By fine-tuning the times the motor is on and off, you may
be able to control the speed of the motor. That is, if the motor is turned on and off periodically,
it will move the LEGO piece it is controlling (e.g. a gear) less than if the motor was on all the
time.

5. Connect two sensors to Sensor1 and Sensor2.

6. Open the file l ego_adv. c in Notepad. Analyze the code and try to understand what the code

will do. For this code to work, you may have to calibrate the sensors using potentiometers. For
details, see Lego documentation on the MSL web-site.

7. Compile and run the program lego_adv.c. Shine light on the sensors. Does the code behave

how you expected? If not, analyze the code again and try to understand its behaviour.

9

List of Potential Problems

In your time during the lab you will likely encounter countless problems. In this section, you will
find descriptions of some common mistakes and problems we are aware of. Hopefully, this
knowledge will help you solve new problems when they occur.

Wrong Command-Prompt

If you open the regular Windows Command Prompt instead of the Cygwin command prompt, the
Makefile will not work or will behave weirdly.

Disk Space

You have limited disk space on the W: drive. Since you probably use the same account for
multiple courses, you may run out of disk space. The make utility will usually fail with an error
message that will not reveal the problem. Common error messages are “Cannot write file
<filename>.<ext>”. Check the amount of free space on the disk (In Windows Explorer right-click
on the W: drive and select Properties). If disk space is the problem, free up some space on the
drive by deleting unnecessary files. make cl ean may also help, but only temporarily. It will
remove all files generated previously, but next make will create more files.

UNIX files on Windows

If you open your source file in Notepad and find that it looks all garbled (e.g. all squeezed into a
few lines), try opening it with another program, such as WordPad.

Conflicts between Assembler and C

If you use assembly, you should be aware of the following issue. If there is a c program (.c
extension) and an assembler program (.s extension), with the same base name in the same
folder, assembler code will get compiled even when the C source code is specified.

For instance, if a folder contains files pr ogr am. s and pr ogr am. c , both of the following
commands will compile and run the assembler program:
make SRCS=” pr ogr am. s” r un
make SRCS=” pr ogr am. c” r un

WORKAROUND: Change one of the files’ names.

Frozen Debugger

The debugger sometimes appears frozen: i.e. all of the buttons are greyed, and you cannot press
any of them. The resolution of this problem depends on the situation

1. You have just started the debugger and it appears frozen
Click on the area with source code (white part of the window) and press S on the keyboard. The
debugger will single-step through your code and the user-interface should become responsive.

2. The debugger is unresponsive after you pressed Finish or Continue
Your program is probably stuck in a loop that takes a long time (possibly an infinite loop, whether
intentional or not). Press the Stop button to interrupt the program execution.

10

Configuration/Hardware Problem

If the debugger is not responding or the program is not running, check if the program was
downloaded to the board successfully. To do this, look into the command line window where you
ran your make commands and check for error messages. If everything was OK, the window
should look like this:

If there are problems, there might be an error message that is hard to spot, like in the following
figure:

In the above figure the debugger was started without any problems (not shown), but debugging
was impossible. By careful inspection of the output of the make utility, we observe the line:
Ver i f y f ai l ed bet ween addr ess 0x1000000 and 0x1002AE7. This means that the
verification process failed.

11

The verification process tries to read the program back from the board’s memory after it has been
downloaded to ensure that the download was successful. If the program read is not equivalent to
the original program that was downloaded, an error is reported. This is usually an indicator of a
hardware problem. Follow this procedure to resolve it:

1. Power the DE2 board off. Wait for three seconds. Power it back on. This ensures that
the default Nios II system has been loaded into the FPGA. Try downloading the
program again.

2. If verification still fails after doing step 1, close all the programs and restart the PC.
Try downloading the program again.

3. If verification still fails, type make conf i gur e (make sure you are in the folder with
the Makefile). This should reprogram the FPGA chip with the default design. If this
helps, the default configuration on the board has been corrupted. Inform your TA
about this, so that they can fix it permanently.

Miscellaneous

� printf’s always go to the JTAG UART. However, there are actually two UARTS on the board. If
you want o use RS232 UART (which connects to the COM1 serial port on the computer), you
will have to open a different terminal window. Check the instructions on the MSL web-site
(under Nios II→Devices→ RS-232 UART) for instructions on how to do that.

� Other than turning the board off and back on, the processor can be reset (master reset signal)

by pressing all 4 push buttons (blue buttons in the bottom right corner of the board)
simultaneously. This doesn’t always work reliably, so try until you succeed. It is IMPORTANT
to be aware of this in case you build your design in such a way that pressing all 4 buttons
means something for your program.

� There is no Winzip or a similar utility installed on the Windows system in the lab. You can still

unzip their files by logging into one of the UGSPARC machines, by following these steps:

1. Store your zip file somewhere on the W: drive
2. On the Windows desktop double-click on TeraTermSSH
3. A window will pop-up asking you which machine you wish to connect to. Keep the

default machine name. (You can select another valid name if you know one, of
course)

4. Log-in using your ECF login and password
5. Once logged-in, you have access to the same files that are on the W: drive (W: is a

network mapped drive). Therefore, go to the folder where you saved your zip file and
assuming it is called f i l e. z i p, type
unzi p f i l e. z i p

6. You can now access the unzipped files either through Windows Explorer or SSH. If
the files do not appear immediately in your Windows Explorer window, press F5
(Refresh)

