
Altera Corporation 7–1
May 2007

7. JTAG UART Core

Core Overview The JTAG universal asynchronous receiver/transmitter (UART) core
with Avalon® interface implements a method to communicate serial
character streams between a host PC and an SOPC Builder system on an
Altera® FPGA. In many designs, the JTAG UART core eliminates the need
for a separate RS-232 serial connection to a host PC for character I/O. The
core provides a simple register-mapped Avalon interface that hides the
complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios® II processor)
communicate with the core by reading and writing control and data
registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs,
and provides host access via the JTAG pins on the FPGA. The host PC can
connect to the FPGA via any Altera JTAG download cable, such as the
USB-Blaster™ cable. Software support for the JTAG UART core is
provided by Altera. For the Nios II processor, device drivers are provided
in the HAL system library, allowing software to access the core using the
ANSI C Standard Library stdio.h routines. For the host PC, Altera
provides JTAG terminal software that manages the connection to the
target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated system.

Functional
Description

Figure 7–1 shows a block diagram of the JTAG UART core and its
connection to the JTAG circuitry inside an Altera FPGA. The following
sections describe the components of the core.

NII51009-7.1.0

7–2 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Figure 7–1. JTAG UART Core Block Diagram

Avalon Slave Interface & Registers

The JTAG UART core provides an Avalon slave interface to the JTAG
circuitry on an Altera FPGA. The user-visible interface to the JTAG UART
core consists of two 32-bit registers, data and control, that are accessed
through an Avalon slave port. An Avalon master, such as a Nios II
processor, accesses the registers to control the core and transfer data over
the JTAG connection. The core operates on 8-bit units of data at a time;
eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can
request an interrupt when read data is available, or when the write FIFO
is ready for data. For further details see “Interrupt Behavior” on
page 7–14.

Read & Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve
bandwidth over the JTAG connection. The FIFO depth is parameterizable
to accommodate the available on-chip memory. The FIFOs can be
constructed out of memory blocks or registers, allowing designers to
trade off logic resources for memory resources, if necessary.

Avalon-MM slave
interface

to on-chip
logic

JTAG UART Core

Registers

JTAG
Hub

Interface

IRQ

Built-In Feature of Altera FPGA

Write FIFO

Read FIFO

Data

Control
JTAG
Hub

JTAG Connection to Host PC

Altera FPGA

Other Nodes Using JTAG
Interface (e.g. Another JTAG UART)

TC
K

TD
I

TD
O

TM
S

TR
ST

JTAG
Controller

Automatically Generated by Quartus II

Altera Corporation 7–3
May 2007

JTAG UART Core

JTAG Interface

Altera FPGAs contain built-in JTAG control circuitry that interfaces the
device’s JTAG pins to logic inside the device. The JTAG controller can
connect to user-defined circuits called “nodes” implemented in the
FPGA. Because there may be several nodes that need to communicate via
the JTAG interface, a JTAG hub (i.e., a multiplexer) becomes necessary.
During logic synthesis and fitting, the Quartus® II software automatically
generates the JTAG hub logic. No manual design effort is required to
connect the JTAG circuitry inside the device; it is presented here only for
clarity.

Host-Target Connection

Figure 7–2 shows the connection between a host PC and an SOPC
Builder-generated system containing a JTAG UART core.

Figure 7–2. Example System Using the JTAG UART Core

The JTAG controller on the FPGA and the download cable driver on the
host PC implement a simple data-link layer between host and target. All
JTAG nodes inside the FPGA are multiplexed through the single JTAG
connection. JTAG server software on the host PC controls and decodes the
JTAG data stream, and maintains distinct connections with nodes inside
the FPGA.

Debug Data

PC
Interface JTAG

Host PC

Altera FPGA

 J
TA

G
 C

on
tro

lle
r

JT
AG

H
ub

 JTAG
Server

Download
Cable
Driver

Altera
Download

Cable

JTAG
Debug
Module

JTAG
UART

System Interconnect Fabric

Character Stream

DebuggerDebugger

C

JTAG TerminalJTAG Terminal

Nios II
Processor

On-Chip
Memory

M

S S

M

S

Avalon-MM master port

Avalon-MM slave port

7–4 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

The example system in Figure 7–2 contains one JTAG UART core and a
Nios II processor. Both agents communicate to the host PC over a single
Altera download cable. Thanks to the JTAG server software, each host
application has an independent connection to the target. Altera provides
the JTAG server drivers and host software required to communicate with
the JTAG UART core.

1 Systems with multiple JTAG UART cores are possible, and all
cores communicate via the same JTAG interface. Only one
processor should communicate with each JTAG UART core to
maintain coherent data streams.

Device Support
& Tools

The JTAG UART core supports the Arria™ GX, Stratix® III, Stratix II GX,
Stratix II, Stratix, Cyclone® III, Cyclone II, and Cyclone device families.
The JTAG UART core is supported by the Nios II hardware abstraction
layer (HAL) system library. No software support is provided for the first-
generation Nios processor.

To view the character stream on the host PC, the JTAG UART core must
be used in conjunction with the JTAG terminal software provided by
Altera. Nios II processor users access the JTAG UART via the Nios II IDE
or the nios2-terminal command-line utility.

f For further details, refer to the Nios II Software Developer's Handbook or
the Nios II IDE online help

Instantiating the
Core in SOPC
Builder

Designers use the JTAG UART core’s SOPC Builder configuration wizard
to specify the core features. The following sections describe the available
options in the configuration wizard.

Configuration Tab

The options on this tab control the hardware configuration of the JTAG
UART core. The default settings are pre-configured to behave optimally
with the Altera-provided device drivers and JTAG terminal software.
Most designers should not change the default values, except for the
Construct using registers instead of memory blocks option.

Altera Corporation 7–5
May 2007

JTAG UART Core

Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host.
The following settings are available:

■ Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are allowable. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

■ IRQ Threshold—The write IRQ threshold governs how the core
asserts its IRQ in response to the FIFO emptying. As the JTAG
circuitry empties data from the write FIFO, the core asserts its IRQ
when the number of characters remaining in the FIFO reaches this
threshold value. For maximum bandwidth efficiency, a processor
should service the interrupt by writing more data and preventing the
write FIFO from emptying completely. A value of 8 is typically
optimal. See “Interrupt Behavior” on page 7–14 for further details.

■ Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of on-chip logic
resources. This option is useful when memory resources are limited.
Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth
of 8 (bytes) consumes roughly 88 LEs.

Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface.
Settings are available to control the depth of the FIFO and the generation
of interrupts.

■ Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are acceptable. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

■ IRQ Threshold—The IRQ threshold governs how the core asserts its
IRQ in response to the FIFO filling up. As the JTAG circuitry fills up
the read FIFO, the core asserts its IRQ when the amount of space
remaining in the FIFO reaches this threshold value. For maximum
bandwidth efficiency, a processor should service the interrupt by
reading data and preventing the read FIFO from filling up
completely. A value of 8 is typically optimal. See “Interrupt
Behavior” on page 7–14 for further details.

7–6 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

■ Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of logic resources.
This option is useful when memory resources are limited. Each byte
consumes roughly 11 LEs, so a FIFO depth of 8 (bytes) consumes
roughly 88 LEs.

Simulation Settings

At system generation time when SOPC Builder generates the logic for the
JTAG UART core, a simulation model is also constructed. The simulation
model offers features to simplify simulation of systems using the JTAG
UART core. Changes to the simulation settings do not affect the behavior
of the core in hardware; the settings affect only functional simulation.

Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read
FIFO upon simulated system reset. The configuration wizard accepts an
arbitrary character string, which is later incorporated into the test bench.
After reset, this character string is pre-initialized in the read FIFO, giving
the appearance that an external JTAG terminal program is sending a
character stream to the JTAG UART core.

Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create
ModelSim® macros to open interactive windows during simulation.
These windows allow the user to send and receive ASCII characters via a
console, giving the appearance of a terminal session with the system
executing in hardware. The following options are available.

■ Do not generate ModelSim aliases for interactive windows—This
option does not create any ModelSim macros for character I/O.

■ Create ModelSim alias to open a window showing output as ASCII
text—This option creates a ModelSim macro to open a console
window that displays output from the write FIFO. Values written to
the write FIFO via the Avalon interface are displayed in the console
as ASCII characters.

■ Create ModelSim alias to open an interactive stimulus/response
window—This option creates a ModelSim macro to open a console
window that allows input and output interaction with the core.
Values written to the write FIFO via the Avalon interface are
displayed in the console as ASCII characters. Characters typed into

Altera Corporation 7–7
May 2007

JTAG UART Core

the console are fed into the read FIFO, and can be read via the Avalon
interface. When this option is enabled, the simulated character input
stream option is ignored.

Hardware
Simulation
Considerations

The simulation features were created for easy simulation of Nios II
processor systems when using the ModelSim simulator. The simulation
model is implemented in the JTAG UART core’s top-level HDL file. The
synthesizable HDL and the simulation HDL are implemented in the same
file. Some simulation features are implemented using “translate on/off”
synthesis directives that make certain sections of HDL code visible only
to the synthesis tool.

1 Refer to AN 351: Simulating Nios II Processor Designs for complete
details of simulating the JTAG UART core in Nios II systems.

Other simulators can be used, but will require user effort to create a
custom simulation process. Designers can use the auto-generated
ModelSim scripts as reference to create similar functionality for other
simulators.

c Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you change the
simulation directives to create a custom simulation flow, be
aware that SOPC Builder overwrites existing files during system
generation. Take precaution so that your changes are not
overwritten.

Software
Programming
Model

The following sections describe the software programming model for the
JTAG UART core, including the register map and software declarations to
access the hardware. For Nios II processor users, Altera provides HAL
system library drivers that enable you to access the JTAG UART using the
ANSI C standard library functions, such as printf() and getchar().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios II systems.
HAL users should access the JTAG UART via the familiar HAL API and
the ANSI C standard library, rather than accessing the JTAG UART
registers. ioctl() requests are defined that allow HAL users to control
the hardware-dependent aspects of the JTAG UART.

c If your program uses the Altera-provided HAL device driver to
access the JTAG UART hardware, accessing the device registers
directly will interfere with the correct behavior of the driver.

7–8 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

For Nios II processor users, the HAL system library API provides
complete access to the JTAG UART core's features. Nios II programs treat
the JTAG UART core as a character mode device, and send and receive
data using the ANSI C standard library functions, such as getchar()
and printf().

“Printing Characters to a JTAG UART Core as stdout” demonstrates the
simplest possible usage, printing a message to stdout using printf(). In
this example, the SOPC Builder system contains a JTAG UART core, and
the HAL system library has been configured to use this JTAG UART
device for stdout.

Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{
 printf("Hello world.\n");
 return 0;
}

“Transmitting Characters to a JTAG UART Core” on page 7–9
demonstrates reading characters from and sending messages to a JTAG
UART core using the C standard library. In this example, the SOPC
Builder system contains a JTAG UART core named jtag_uart that is
not necessarily configured as the stdout device. In this case, the program
treats the device like any other node in the HAL file system.

Altera Corporation 7–9
May 2007

JTAG UART Core

Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
 char* msg = "Detected the character 't'.\n";
 FILE* fp;
 char prompt = 0;

 fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
 if (fp)
 {
 while (prompt != 'v')
 { // Loop until we receive a 'v'.
 prompt = getc(fp); // Get a character from the JTAG UART.
 if (prompt == 't')
 { // Print a message if character is 't'.
 fwrite (msg, strlen (msg), 1, fp);
 }

 if (ferror(fp))// Check if an error occurred with the file pointer
 clearerr(fp);// If so, clear it.
 }

 fprintf(fp, "Closing the JTAG UART file handle.\n");
 fclose (fp);
 }

 return 0;
}

In this example, the ferror(fp) is used to check if an error occurred on
the JTAG UART connection, such as a disconnected JTAG connection. In
this case, the driver detects that the JTAG connection is disconnected,
reports an error (EIO), and discards data for subsequent transactions. If
this error ever occurs, the C library latches the value until you explicitly
clear it with the clearerr() function.

The Nios II Software Developer's Handbook provides complete details of the
HAL system library. The Nios II Embedded Design Suite (EDS) provides
a number of software example designs that use the JTAG UART core.

Driver Options: Fast vs. Small Implementations

To accommodate the requirements of different types of systems, the JTAG
UART driver provides two variants: A fast version and a small version.
The fast behavior will be used by default. Both the fast and small drivers
fully support the C standard library functions and the HAL API.

7–10 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the JTAG UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for
systems that could be performing other tasks in the interim. In addition,
the fast version of the Altera Avalon JTAG UART monitors the connection
to the host. The driver discards characters if there is no host connected, or
if the host is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG
UART hardware before sending and receiving each character. The
performance of the small driver is poor if you are sending large amounts
of data. The small version assumes that the host is always connected, and
will never discard characters. Therefore, the small driver will hang the
system if the JTAG UART hardware is ever disconnected from the host
while the program is sending or receiving data. There are two ways to
enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system as well.

■ Specify the preprocessor option
-DALTERA_AVALON_JTAG_UART_SMALL. You can use this option if
you want the small, polled implementation of the JTAG UART
driver, but you do not want to affect the drivers for other devices.

ioctl() Operations

The fast version of the JTAG UART driver supports the ioctl() function
to allow HAL-based programs to request device-specific operations.
Specifically, you can use the ioctl() operations to control the timeout
period, and to detect whether or not a host is connected. The fast driver
defines the ioctl() operations shown in Table 7–1.

Table 7–1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will
decide that the host is not connected. A timeout of 0
makes the target assume that the host is always
connected. The ioctl arg parameter passed in must
be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that
indicates whether the host is connected and acting as
a terminal (1), or not connected (0). The ioctl arg
parameter passed in must be a pointer to an integer.

Altera Corporation 7–11
May 2007

JTAG UART Core

f Refer to the Nios II Software Developer's Handbook for details on the
ioctl() function.

Software Files

The JTAG UART core is accompanied by the following software files.
These files define the low-level interface to the hardware, and provide the
HAL drivers. Application developers should not modify these files.

■ altera_avalon_jtag_uart_regs.h—This file defines the core's register
map, providing symbolic constants to access the low-level hardware.
The symbols in this file are used only by device driver functions.

■ altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files
implement the HAL system library device driver.

Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The
Nios II IDE supports the JTAG UART core, and displays character I/O in
a console window. Altera also provides a command-line utility called
nios2-terminal that opens a terminal session with the JTAG UART core.

f For further details, refer to the Nios II Software Developer's Handbook and
the Nios II IDE online help.

Register Map

Programmers using the HAL API never access the JTAG UART core
directly via its registers. In general, the register map is only useful to
programmers writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

7–12 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Table 7–2 shows the register map for the JTAG UART core. Device drivers
control and communicate with the core through the two 32-bit memory-
mapped registers.

Data Register

Embedded software accesses the read and write FIFOs via the data
register. Table 7–3 describes the function of each bit.

A read from the data register returns the first character from the FIFO (if
one is available) in the DATA field. Reading also returns information
about the number of characters remaining in the FIFO in the RAVAIL
field. A write to the data register stores the value of the DATA field in the
write FIFO. If the write FIFO is full, then the character is lost.

Table 7–2. JTAG UART Core Register Map

Offset Register
Name R/W

Bit Description

31 ... 16 15 14 ... 11 10 9 8 7 ... 2 1 0

0 data RW RAVAIL RVALID (1) DATA

1 control RW WSPACE (1) AC WI RI (1) WE RE

Note to Table 7–2:
(1) Reserved. Read values are undefined. Write zero.

Table 7–3. data Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 .. 7 DATA R/W The value to transfer to/from the JTAG core. When
writing, the DATA field is a character to be written to the
write FIFO. When reading, the DATA field is a character
read from the read FIFO.

15 RVALID R Indicates whether the DATA field is valid. If RVALID=1,
then the DATA field is valid, else DATA is undefined.

16 .. 32 RAVAIL R The number of characters remaining in the read FIFO
(after this read).

Altera Corporation 7–13
May 2007

JTAG UART Core

Control Register

Embedded software controls the JTAG UART core’s interrupt generation
and reads status information via the control register. Table 7–4
describes the function of each bit.

A read from the control register returns the status of the read and write
FIFOs. Writes to the register can be used to enable/disable interrupts, or
clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs,
respectively. The WI and RI bits indicate the status of the interrupt
sources, qualified by the values of the interrupt enable bits (WE and RE).
Embedded software can examine RI and WI to determine what condition
generated the IRQ. See “Interrupt Behavior” on page 7–14 for further
details.

The AC bit indicates that an application on the host PC has polled the
JTAG UART core via the JTAG interface. Once set, the AC bit remains set
until it is explicitly cleared via the Avalon interface. Writing 1 to AC clears
it. Embedded software can examine the AC bit to determine if a
connection exists to a host PC. If no connection exists, the software may
choose to ignore the JTAG data stream. When the host PC has no data to
transfer, it can choose to poll the JTAG UART core as infrequently as once
per second. Delays caused by other host software using the JTAG
download cable could cause delays of up to 10 seconds between polls.

Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual
interrupt conditions are pending and enabled.

Table 7–4. control Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts

1 WE R/W Interrupt-enable bit for write interrupts

8 RI R Indicates that the read interrupt is pending

9 WI R Indicates that the write interrupt is pending

10 AC R/C Indicates that there has been JTAG activity since the bit
was cleared. Writing 1 to AC clears it to 0.

16 .. 32 WSPACE R The number of spaces available in the write FIFO.

7–14 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

1 Interrupt behavior is of concern to device driver programmers
concerned with the bandwidth performance to the host PC.
Example designs and the JTAG terminal program provided with
Nios II Embedded Design Suite (EDS) are pre-configured with
optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and
read interrupts. The WE and RE bits in the control register
enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly
empty. The “nearly empty” threshold, write_threshold, is specified at
system generation time and cannot be changed by embedded software.
The write interrupt condition is set whenever there are write_threshold or
fewer characters in the write FIFO. It is cleared by writing characters to
fill the write FIFO beyond the write_threshold. Embedded software should
only enable write interrupts after filling the write FIFO. If it has no
characters remaining to send, embedded software should disable the
write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full.
The “nearly full” threshold value, read_threshold, is specified at system
generation time and cannot be changed by embedded software. The read
interrupt condition is set whenever the read FIFO has read_threshold or
fewer spaces remaining. The read interrupt condition is also set if there is
at least one character in the read FIFO and no more characters are
expected. The read interrupt is cleared by reading characters from the
read FIFO.

For optimum performance, the interrupt thresholds should match the
interrupt response time of the embedded software. For example, with a
10-MHz JTAG clock, a new character will be provided (or consumed) by
the host PC every 1µs. With a threshold of 8, the interrupt response time
must be less than 8µs. If the interrupt response time is too long, then
performance will suffer. If it is too short, then interrupts will occur too
frequently.

1 For Nios II processor systems, read and write thresholds of 8 are
an appropriate default.

Altera Corporation 7–15
May 2007

JTAG UART Core

Document
Revision History

Table 7–5 shows the revision history for this chapter.

Table 7–5. Document Revision History

Date & Document
Version Changes Made Summary of Changes

May 2007
v7.1.0

● Chapter 7 was formerly chapter 5.
● Added Arria™ GX to “Device Support & Tools” on page 7–4.

—

March 2007
v7.0.0

Added Cyclone III and Stratix III support. Version 7.0 of the
Quartus II software
added Cyclone III
support.

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies.

● Changed old “Avalon switch fabric” term to “system
interconnect fabric.”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.”

For version 6.1, added
Stratix III support.
Additionally, Altera
released the Avalon
Streaming interface,
which necessitated some
rephrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release.
Previously in the Nios II Processor Reference Handbook.

—

December 2004
v1.2

Added Cyclone II support.
—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

7–16 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

	7. JTAG UART Core
	Core Overview
	Functional Description
	Avalon Slave Interface & Registers
	Read & Write FIFOs
	JTAG Interface
	Host-Target Connection

	Device Support & Tools
	Instantiating the Core in SOPC Builder
	Configuration Tab
	Write FIFO Settings
	Read FIFO Settings

	Simulation Settings
	Simulated Input Character Stream
	Prepare Interactive Windows

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast vs. Small Implementations
	ioctl() Operations

	Software Files
	Accessing the JTAG UART Core via a Host PC
	Register Map
	Data Register
	Control Register

	Interrupt Behavior

	Document Revision History

